THE UNIVERSITY OF QUEENSLAND

Improving the performance of Lucille,

a search and indexing library for Python

by
Dan Callaghan

School of Information Technology and Electrical Engineering,
The University of Queensland

Submitted for the degree of Bachelor of Engineering
in the division of Software Engineering
May 2008

18 May 2008

Head

School of Information Technology and Electrical Engineering
The University of Queensland

St Lucia QLD 4072

Dear Professor Bailes,

In accordance with the requirements of the degree of Bachelor of Engineering in the

division of Software Engineering, I present the following thesis entitled

‘Improving the performance of Lucille,

a search and indexing library for Python!

This work was performed under the supervision of Dr Peter Robinson.
I declare that the work submitted in this thesis is my own, except as acknowledged
in the text and footnotes, and has not been previously submitted for a degree at The

University of Queensland or any other institution.

Yours sincerely,

Dan Callaghan

Acknowledgements

I would like to gratefully acknowledge the assistance of my supervisor, Dr Peter Robin-

son, for his guidance of my research and his input into the preparation of this thesis.

I would also like to acknowledge the help of Sam Kingston.

vi

Abstract

High-level, dynamic, interpreted languages, such as Python, have traditionally been
considered viable only for trivial scripting tasks. Asthe cost of computing power contin-
ues to decrease, such languages are becoming practical for a wider variety of program-
ming problems. Nevertheless, for some computation-bound applications the execution
overhead of these languages still makes them unfeasible. To mitigate this problem in the
case of Python a clear and well-documented C API makes it relatively simple to replace
Python code with compiled C code piece-by-piece, at the expense of the expressiveness
and flexibility of Python.

The purpose of this project is to investigate these performance issues in the con-
text of an existing code base: Lucille, a Python port of the Apache Lucene search and
indexing library for Java.

Initially the performance characteristics of the library were examined, with the aim
of identifying possible areas for improvement. A number of techniques were explored
for improving the performance of individual components in the library, with varying
results. In the report these techniques are generalised, in order to provide guidance to

others seeking to improve the performance of Python code.

vii

viii

Contents

Acknowledgements
Abstract
1 Introduction
11 Background Lo
111 Lucene. e
112 Python.
113 Lucille oo o
1.1.4 OtherportsofLucene
1.2 PerformanceofLucille
1.3 Outlineofthisreport
2 Reading from the index

2.1 Writing an extension moduleinC

22 Usingmmapo oo vt e e
Psyco

Lexical scanning with RE2C
4.1 PLY o e e e e
42 RE2C ... o

4.3 Implementing the replacement standard tokenizer
Python-level optimisations

Search using CLucene and Boost.Python

6.1 CLucene e
6.2 BoostPython
6.3 Integrating the CLucene searchmodule

6.4 Futuredirections o i i i e e

ix

vii

10

15

17
18
18

19

21

7 Conclusion 29

References 31
A Code listings 33
A1 storeextensionmodule o L. 33
A2 analysis. standardextensionmodule 54
A.3 CLucene searchmodule 60

List of figures

2.2

2.3

3.1

4.1
4.2

5.1

cProfile output for a typical search operation, ordered by total func-

tiontime 8
Class diagrams showing the evolution of IndexInput 12
cProfile output using MMapIndexInput 13
Applying Psyco to the benchmarking script 16
A snippet of the PLY rule definitions 18
A snippet of the code generated by RE2C using nested 1fs 19
C-level profiling of the Python interpreter during a search operation . . . 22

List of tables

1.1

2.1

2.2

3.1

Average time taken to perform common operations against a testing corpus 4

Search times with BaseIndexInput implementedinC 10

Search times using MMapIndexInput 11

Search timing results with and without Psyco (using MMapIndexInput) 16

5.1

6.1

6.2
6.3

Analysis time using PLY and RE2C

Search timing results with and without reduced attribute accesses (using

MMapIndexINpUL) . o v v v v v v e e e e e e e e e e e

Some examples of using the Boost.Python object class, and the equiv-
alent Python API calls (without error checking)
Some examples of using Boost.Python’s derived object types
Search timing results comparing original and CLucene-based search

module (using MMapIndexInput)

Summary of timingresults L o oL

xi

xii

Chapter 1

Introduction

The aim of the project is to investigate techniques for improving the performance of
Lucille, a Python port of the Lucene information retrieval library.

Profiling data was collected for the various components of Lucille using Python’s
builtin profilers [1], in order to identify time-critical sections of the Lucille codebase.
This profiling data was then used to inform investigations into improving the perfor-
mance of these time-critical sections.

The results of these optimisations are presented in this report, along with a thorough

description of each technique used and its potential applicability to other Python code.

1.1 Background

1.1.1 Lucene

Lucene (http://lucene.apace.org/java/) is an open-source information re-
trieval library written in Java, developed by the Apache Foundation. It is used by ap-
plications which need to perform user searches across large sets of textual data with
relevance-ranked results.*

Lucene’s core functionality is building and searching persistent indexes; it also in-
cludes supporting packages for parsing structured user queries, pre-processing docu-
ments for indexing (tokenising, stemming, filtering out stop-words), highlighting query
terms in results, and other ancillary tasks.

Lucene’s search implementation uses the Vector Space Model, introduced for the

SMART Information Retrieval System [2]. The model is so called because documents in

'A list of applications and Web sites using Lucene is maintained on the Lucene wikiathttp: //wiki.

apache.org/jakarta-lucene/PoweredBy.

http://lucene.apace.org/java/
http://wiki.apache.org/jakarta-lucene/PoweredBy
http://wiki.apache.org/jakarta-lucene/PoweredBy

an index, and user queries against that index, are represented as vectors; the relevance
of a search hit is computed as the difference in the angles of the document vector and
the query vector.

Various other types of queries and filters are also supported by Lucene, allowing

applications to perform complex searches against indexes.

1.1.2 Python

Python is an open-source high-level language and runtime environment, originally
written by Guido van Rossum [3], now actively developed by a large community. It is
well established as a scripting language and for scientific computation; in recent years
it has also gained popularity (along with other dynamic, interpreted languages like
Ruby) in the sphere of Web application development.

Python is a substantially different language to Java. Python is dynamically typed
and interpreted at runtime, which lies in almost direct contrast to Java; although Java
is in some sense interpreted, its interpreter is of a very different style to Python’s. The
compilation phase in Java is also crucial, since it performs not only static type checking
but many other tasks of an ordinary compiler for native code, such as optimisation;
Python on the other hand has no compilation phase. The design philosophies underly-
ing the two languages are also vastly different: where Python encourages® compact but
clear expression, Java favours explicitness and verbosity (ostensibly as a way of ensuring
program correctness and minimising programmer error). An excellent comparison of
Python and Java is given in [4].

The relative merits of dynamic and static type systems are a topic of perpetual de-
bate, but like so many other “religious wars” in the field, the choice of one over the
other is perhaps no more than a question of personal style or preference. Nevertheless
dynamic, interpreted languages in general, and Python in particular, are undeniably a
useful tool for the modern programmer.

Python’s built-in support for a wide range of data structures and its extensive stan-
dard libraries, as well as its high-level features like automatic reference-counted mem-
ory management, first-class functions, and powerful introspection allow Python code
to be rapidly developed and easily maintained. This applies both to the development of
Lucille itself and of applications using the library.

Unfortunately for users of Lucene, Java is an extremely insular environment?® — the

only outlet (or inlet) to it is the Java Native Interface [5], which is notoriously unwieldy

’>>> import this
%Java programmers are apparently content to re-implement the universe in Java.

and not widely used. Would-be users of Lucene are left with two options: go Java all
the way, or run their Lucene code in a separate process (along with all the tedium and

overhead which that entails, like interprocess communication and serialisation).

1.1.3 Lucille

Lucille was initially a more-or-less direct translation from Java to Python, however
because of the above-mentioned language differences, this approach is not necessarily
the most appropriate.

Lucille can take advantage of Python features where the equivalent is difficult (if not
impossible) in Java. For example, generator functions in Python are a kind of co-routine
(see [6, pp. 193—200]), allowing the concise expression of functions which operate on
a sequence of input. State is encoded implicitly in the point of execution at which the
generator was suspended. A generator function can easily be written in a lazy style,
evaluating each element of its output sequence as needed. Java on the other hand has
no equivalent language feature, and so the Java programmer must define classes whose
instances explicitly keep track of their state, and design APIs to allow for such sequential
evaluation. Lucille’s implementation of token analysis already uses generators to great
advantage.

Conversely, implementation details of the Python interpreter can lead to perfor-
mance quirks in the Python port which would not otherwise be encountered in Java. For
example, method calls are more expensive in Python than in Java, because the method’s
definition must be looked up dynamically, as opposed to being determined statically as

in Java.

1.1.4 Other ports of Lucene

Lupy (http://divmod.org/projects/lupy) was a port of a very early release of
Lucene to Python. Lupy was abandoned in May 2004. The Lucene codebase has evolved
substantially since then, and so Lupy code cannot reasonably be reused in Lucille.

Lucy (http://lucene.apache.org/lucy/) began as a subproject of Lucene
in June 2006, with the aim of implementing core Lucene functionality in C, which ports
of Lucene to other high-level languages could build upon. At present no ported code
has been released by the Lucy project.

PyLucene (http://pylucene.osafoundation.org/) provides a wrapper
around a GCJ-compiled version of Lucene, allowing it to be accessed from Python. GCJ

is still incomplete and unstable however, and as a result PyLucene is difficult to build

http://divmod.org/projects/lupy
http://lucene.apache.org/lucy/
http://pylucene.osafoundation.org/

and not suited for production use.

Kinosearch (http://www.rectangular.com/kinosearch/) and Ferret
(http://ferret.davebalmain.com/) are loose ports of Lucene to Perl and
Ruby respectively. These are dynamic, interpreted languages like Python, and therefore
some of the same challenges are faced when porting to these languages. The solutions
adopted by both projects are to move an increasing proportion of their code to C
extension modules, and in some cases making substantial changes to the internal and
external interfaces of the library to better accommodate the performance quirks of the

target language.

1.2 Performance of Lucille

The original version of Lucille is substantially slower than Lucene. Table 1.1 gives a
summary of the average time taken to perform a range of common operations using
Lucene, and the equivalent timings from Lucille. The corpus of documents used is the

standard 20 Newsgroups testing corpus [7].

Table 1.1: Average time taken to perform common operations against a testing corpus

Operation Lucene 2.1 Original Lucille

Boolean query (milliseconds)

1 required term 1.545 (0 =2.103) 24.868 (0 = 0.224)

1 required, 1 optional term 1.897 (0= 3.547) 44.513 (0 = 0.444)

1 required, 1 prohibited term 1.783 (0 = 1.072) 46.162 (0 = 0.620)

2 required, 1 optional term 0.265 (0= 0.592) 49.699 (0 = 0.683)

1 required, 2 optional terms 2.546 (0= 0.926) 71.054 (0 = 0.795)

2 optional, 1 prohibited term 2.740 (0= 1.182) 100.348 (0 = 0.802)
Analysis (tokens/second) 206,811 14,048

All timing and profiling results presented in this report were performed
on Linux 2.6.24 with Python 2.5.2 and Sun Java 1.6.0_05, running on an AMD
Phenom 9500 quad-core CPU with 2 GB of physical memory.

Timing tests were designed to isolate the operation in question as much as possible:
measured times exclude interpreter/JVM startup and cleanup, as well as any initialisa-

tion required to run the timing tests.

http://www.rectangular.com/kinosearch/
http://ferret.davebalmain.com/

It is worth noting, however, that Java’s garbage collector makes no guarantees about
when objects are destroyed, and so it is possible that garbage collection time is under-
represented in timing results for Lucene. This is in contrast to Python’s reference count-
ing scheme, which means that objects are always destroyed as soon as they are no longer
referenced;* object destruction time will therefore always be included in timing for
Lucille.

Times given are averaged across a large number of consecutive repetitions of the
operation wherever appropriate. To minimise the impact of disk activity, an untimed
run is performed immediately before the real run, to “warm” the operating system disk
cache. All timings were performed on an otherwise-unloaded system, to avoid interfer-

ence from other processes executing simultaneously.

1.3 Outline of this report

The subsequent chapters of this report detail each of the optimisation techniques em-
ployed during the project. The method and tools used are described, and timing results
for the optimised version of the code are presented. The effectiveness of each technique
is also discussed, as well as any limitations which may apply.

In the conclusion a summary of the project’s results is given, along with a discussion
of future directions for further improving the performance of Lucille.

Appendix A is a listing of all code discussed in this report. The full source of the
original version of Lucille, as well as the scripts and data used to collect timing results
for this report, are available on the attached CD-ROM and at http://www.djc.id.
au/2008/thesis/.

*Objects participating in reference cycles are the exception to this rule, however Lucille code was

written to deliberately avoid reference cycles for this reason.

http://www.djc.id.au/2008/thesis/
http://www.djc.id.au/2008/thesis/

Chapter 2
Reading from the index

In the Lucene store module, the IndexInput class and its subclasses provide the
lowest layer of 1/0 abstraction for reading index data from storage. These classes are re-
sponsible for decoding raw bytes in persistent storage into integer and string data types,
according to a number of encoding schemes described in [8]. Bytes are read sequentially
from the current file position; seeking to a given file position is also supported.

The design of the IndexInput class hierarchy uses polymorphism to hide from
calling code the details of where bytes are read from. IndexInput itself defines
methods for decoding (readVInt, readString, etc) in terms of the readByte and
readBytes methods. This allows subclasses to customise how data is read simply by
overriding these two methods, while other classes can call the decoding methods to
decode primitive data types without concern for how the data is read from storage. An
equivalent strategy was adopted for Lucille while porting. Figure 2.2(a) illustrates the
class as it exists in the original version of Lucille.

This design means, however, that the read byte method of the IndexInput
subclass in use is called once for nearly every byte read from the index. In Python,
method calls are a notoriously costly operation, because each time the interpreter must
not only look up the attribute in question, but then create an anonymous bound method
object and call into it, which involves creating a new interpreter stack frame and several
C-level calls. In contrast, Java methods can be looked up statically by the JIT compiler
and called into at roughly the same speed as native functions.

The decoding algorithms, although quite simple, involve many integer arithmetic
operations, such as left-shit and addition, for decoding each integer or string read from
storage. Again due to Python’s dynamic nature, the interpreter must look up the type

of each variable for each arithmetic operation that is performed; although not as ex-

pensive as a method call, these type lookups make arithmetic operations in Python
several orders of magnitude slower than the equivalent operation executed directly in
compiled code would be. Java’s JIT compiler, on the other hand, is able to use static type
information to reduce such arithmetic operations to native CPU instructions.

The impact of these issues is evident in Figure 2.1, which shows the profiling results

of a typical search operation.

Figure 2.1: cProfile output for a typical search operation, ordered by total function

time

ncalls tottime percall cumtime percall filename:lineno (function)

607488 2.716 0.000 4.546 0.000 store.py:112(read byte)
213353 1.668 0.000 2.759 0.000 /usr/libé4/python2.5/StringIO
.py:208 (write)
55518 1.500 0.000 7.038 0.000 store.py:144 (read chars)
55293 1.394 0.000 12.823 0.000 index.py:655 (advance)
366794 1.281 0.000 4.235 0.000 store.py:132(read vint)
607490 1.120 0.000 1.120 0.000 {method 'read' of 'file'
objects}
607488 0.710 0.000 0.710 0.000 {ord}
213353 0.374 0.000 0.374 0.000 {unichr}
269624 0.345 0.000 0.345 0.000 {isinstance}
269602 0.333 0.000 0.333 0.000 {len}
55518 0.319 0.000 0.461 0.000 /usr/libé4/python2.5/StringIO
.py:54(__init)
221002 0.297 0.000 0.297 0.000 {method 'append' of 'list'
objects}
55518 0.283 0.000 7.920 0.000 store.py:173(read_string)
600 0.276 0.000 0.276 0.000 index.py:734(index offset)
213353 0.270 0.000 0.270 0.000 /usr/libé4/python2.5/StringIO
.py:38(complain ifclosed)
55518 0.234 0.000 0.354 0.000 /usr/libe64/python2.5/StringIO

.py:258 (getvalue)

2.1 Writing an extension module in C

The most effective way of reducing interpreter overhead is simply to eliminate the in-

terpreter — that is, by re-writing the code in question in C as an extension module.

When issuing an import statement, the Python interpreter' is capable of loading
the requested module from a dynamic shared object (DSO) using the d1open () POSIX
function or equivalent functionality on other platforms, in addition to the ordinary
behaviour of loading the module from a . py file. In fact, a large number of the standard
Python library modules are implemented as DSOs, although the import mechanism
is deliberately designed to make this entirely transparent to the user. Modules imple-
mented as DSOs are typically referred to as extension modules, since they “extend” the
interpreter with native executable code.

The Python interpreter expects a specially-named initialisation function to be ex-
ported in the DSO for an extension module. When the extension module is first loaded
into the interpreter,® this initialisation function is called. The function can then use
Python API calls to initialise and populate the module with type definitions or other
Python objects, which can then be accessed by Python code running in the interpreter.

The API provides functions for constructing and manipulating the basic Python
builtin data types (str, unicode, list, dict, tuple, and others), as well as generic
object manipulation operations (attribute lookup, rich comparison, arithmetic opera-
tions, calling Python callable objects, etc). Functions in the extension module can use
the Python API to interact with other objects in the interpreter.

An excellent introduction to writing extension modules is in [9], and a full reference
for the API is in [10].

To improve the performance of the IndexInput class, an extension
module named store was developed. This module provides a class named
BaseIndexInput, which implements all of the decoding methods (read int,
read_vint, etc) as C functions operating directly with native data types. This avoids
the overhead of the Python interpreter for these arithmetic operations. Like the
original Python versions, these functions call the read byte and read bytes
methods of themselves by using the Python AP, in order to read raw data. This means
that the BaseIndexInput class is not directly usable, since it does not itself provide
a read byte method for reading data. The IndexInput class in the Python
store module thus no longer needs to implement these decoding methods, inheriting
them instead from BaseIndexInput. It implements only the read byte and
read bytes methods, which read data from a file. In this way the IndexInput

'Some prefer the term “the CPython interpreter’, i.e. the original Python implementation written in C
by Guido van Rossum and others. This is to distinguish it from Jython and other implementations of the
Python interpreter, which do not provide a C API.

*A module may be imported many times, but the interpreter ensures that it is only loaded once. The

same applies to modules implemented as Python code.

presents an unchanged interface to the rest of the code, but calls to its decoding
methods are dispatched to compiled code which can perform arithmetic operations
faster. Subclasses of IndexInput also benefit in the same way, by virtue of their
inheritance, with no changes necessary to their code.

Figure 2.2(b) illustrates the new class structure after introducing BaseIndexInput.
Table 2.1 shows the timing results after introducing BaseIndexInput. Listing A.1

shows the complete extension module.

Table 2.1: Search times with BaseIndexInput implemented in C

Operation Time (milliseconds)

Boolean query
1 required term 21.596 (0 = 0.195)
1 required, 1 optional term 36.903 (0 = 0.292)
1 required, 1 prohibited term 38.733 (0 = 0.349)
2 required, 1 optional term 32.526 (0 = 0.202)
1 required, 2 optional terms 54.776 (0 = 0.633)

2 optional, 1 prohibited term 82.206 (¢ = 0.821)

2.2 Using mmap

The mmap () function is a standard POSIX system call which causes the contents of a
file to be mapped into the address space of a process [11]. This allows the program to
access the contents of the file simply by referring to locations in memory, rather than
by issuing seek () and read () system calls. The virtual memory system is used to
translate these memory accesses to buffers holding the file contents, and although it
results in a page fault whenever unbuffered file contents are accessed, this is typically
much more efficient than the system call and buffer copying overhead associated with
repeated calls to read (). Some operating systems will also attempt to predict access
patterns and read ahead accordingly, so that buffers are filled earlier.

The Win32 API provides functionality similar to mmap () with its Create-
FileMapping () and MapViewOfFile () functions.

In an attempt to further improve the performance of reading index data from
ordinary files (the most common case), the store extension module was extended

with another class, MMapIndexInput. This class provides the same interface as

10

IndexInput, and so can be used without modification by code which expects
an IndexInput instance, but it exists apart from the inheritance hierarchy of
IndexInput. Rather than directing all read operations through its read byte and
read bytes methods, it uses memory-mapped files to access the raw bytes directly
at the C level. Figure 2.2(c) shows the resulting MMapIndexInput class.

The MMapIndexInput class makes use of the standard Python mmap module to
avoid having to worry about operating system specifics.

The MMapIndexInput class has a number of important limitations. If the oper-
ating system does not support memory-mapped files, or if the index files to be read
are unable to be mapped (e.g. if they reside on a network file system which does not
support memory-mapped access), the mmap module will fail to create the mapping and
MMapIndexInput will not be usable. It is also not suitable for reading from large files
on 32-bit platforms, where virtual address space is typically limited to 1-3 GB (and it is
not uncommon for indexes to be much larger than this).

Timing results for MMapIndexInput are shown in Table 2.2. Figure 2.3 shows the
updated profiling output using MMapIndexInput.

Table 2.2: Search times using MMapIndexInput

Operation Time (milliseconds)

Boolean query
1 required term 15.796 (0 = 0.312)
1 required, 1 optional term 28.296 (0 = 0.474)
1 required, 1 prohibited term 29.623 (0 = 0.417)
2 required, 1 optional term 19.095 (0 = 0.395)
1 required, 2 optional terms 38.270 (0 = 0.547)

2 optional, 1 prohibited term 63.874 (0 = 1.146)

11

(a) The original IndexInput

Figure 2.2: Class diagrams showing the evolution of IndexInput

class with a subclass

IndexInput

seek(pos)
tell()

clone()
read_byte()
read_bytes(n)
read_int()
read_long()
read_vint()
read_chars(n)
skip_chars(n)
read_string()

OffsetIndexInput

= seek(pos)
= clone()

(b) A stripped-down Index-
Input class inheriting from the
BaseIndexInput class

BaseIndexInput

= read_int()

= read_long()
= read_vint()
= read_chars(n)
= skip_chars(n)
= read_string()

IndexInput

seek(pos)
tell()

clone()
read_byte()
read_bytes(n)

T

OffsetIndexInput

= seek(pos)
= clone()

12

(¢) The

class

interface as IndexInput, but
with a faster implementation

provides the

MMaplndexInput

seek(pos)
tell()

clone()
read_byte()
read_bytes(n)
read_int()
read_long()
read_vint()
read_chars(n)
skip_chars(n)
read_string()

MMapIndexInput

Figure 2.3: cProfile output using MMapIndexInput

0.

0
0
0
0.
0
0

0.000 index.py:713
0.

0.000 index.py:462
0

.000 index.py:801

percall filename:lineno (function)
.000 index.py:634 (advance)
0.

000 {method 'read vint' of '

(_index offset)
003 index.py:662(scan_to)
(

field name)

.000 index.py:585(init)
.000 {method 'read string' of '

000 index.py:823(skip to)

do_advance)

.000 index.py:813 (advance)
.064 index.py:684(init)
000 index.py:630(__iter_)

(
(_
(a
(
(
(

.004 index.py:737(get)
.000 {method 'append' of 'list'

ncalls tottime percall cumtime
55293 1.118 0.000 1.776 0
311276 0.373 0.000 0.373
lucille. store.MMapIndexInput' objects}
600 0.282 0.000 0.282
600 0.189 0.000 1.877
55291 0.143 0.000 0.143
55295 0.101 0.000 0.101
55518 0.069 0.000 0.069 0
lucille. store.MMapIndexInput' objects}
350 0.060 0.000 0.136
6100 0.032 0.000 0.041
6100 0.018 0.000 0.058
2 0.015 0.008 0.127
2493 0.014 0.000 0.103
600 0.011 0.000 2.205
7649 0.009 0.000 0.009
objects}

13

14

Chapter 3
Psyco

Psyco is an optimisation tool for Python based on the concept of “just-in-time spe-
cialisation” [12]. One of the most serious hurdles faced in runtime optimisation of a
dynamic language like Python is that the type of each variable in a section of code is
not known, and cannot easily be inferred, until immediately before it is executed. Psyco
addresses this issue by automatically generating a new specialised machine code version
of a block of Python code each time it is entered with different variable types. Due
to the high initial compilation cost, and the potentially large memory requirements of
compiling multiple versions of a function, Psyco provides a facility to specialise only
those functions which are determined at runtime to be called most frequently or run
longest.

A significant limitation of Psyco is that it is only capable of targeting the x86 archi-
tecture, and there are no plans to extend it to support other CPU architectures. There
are also some limitations on the Python constructs which can be compiled by Psyco:
most importantly, generators (using the yield statement) and nested functions will
not be candidates for compilation.

Applying Psyco to a Python program is trivial. Figure 3.1 shows the changes applied
to the benchmarking script in order to use Psyco with Lucille.

The total speed improvement from applying Psyco to a Python program depends on
the characteristics of the program. The most substantial improvements arise when it is
applied to code which performs mainly arithmetic operations on numeric data types.
Psyco works within function boundaries, thus the overhead of function calls in Python is
never eliminated. The most interesting optimisations can only be applied when Psyco
is specialising for types which it “knows” about, such as int and float, as well as

sequence types.

15

Figure 3.1: Applying Psyco to the benchmarking script

--- bench.py
+++ bench.py (with Psyco)
@@ -60,4 +60,6 @@

if len(sys.argv) != 2:

sys.stderr.write ('Usage: bench.py <index>\n')
sys.exit (1)
+ import psyco
psyco. full()
test (sys.argv([1l])

As the timing results in Table 3.1 show," applying Psyco to Lucille yields an overall
improvement in speed of approximately 49%. Given the amount of effort required
to achieve this, it is a very pleasing result. However the improvement is still much
less substantial than other users of Psyco have reported. A likely cause is that the
search module operates on Python class instances inside a number of tight loops when
searching and scoring results, which means that even when Psyco is able to compile the

code it is limited in the optimisations which it can perform.

Table 3.1: Search timing results with and without Psyco (using MMapIndexInput)

Operation Original Using Psyco
Boolean query (milliseconds)
1 required term 15.374 (0 = 0.446) 9.394 (0 = 0.312)
1 required, 1 optional term 26.900 (0 = 0.252) 12.738 (0 = 0.267)

1 required, 1 prohibited term 28.375 (0 = 0.269) 12.967 (0 = 0.424)
2 required, 1 optional term 18.859 (0 = 0.325) 10.175 (0= 0.178)
1 required, 2 optional terms 37.061 (0 = 0.290) 17.515 (0 = 0.269)

2 optional, 1 prohibited term 62.350 (0 = 0.524) 31.793 (0 = 0.407)

"Note that these timings are not directly comparable with other timing results presented in this report,
because these results were collected from a 32-bit Python installation for compatibility with Psyco, whereas

all other results are from a 64-bit installation.

16

Chapter 4
Lexical scanning with RE2C

The analysis module of Lucille, like its analogue in Lucene, provides a number
of tokenizers, which convert text into a stream of tokens, and token filters,
which perform some manipulation on the tokens in a stream. For example,
whitespace tokenizer splitsits input string into tokens separated by whitespace
characters, and lowercase_ filter converts each token in a stream to lower case.

A tokenizer and zero or more token filters are then chained together to form an
analyzer, which is used during indexing to convert the text of a document into discrete
terms to be stored in the index. The same chain of token filters is typically also applied
to user queries, in order to arrive at a set of query terms which are consistent with the
terms stored in the index.

An important analyzer provided by Lucene is StandardAnalyzer, which, as
its name suggests, is intended as a general-purpose analyzer suitable for use by many
applications which do not have more specialised needs. The tokenizer component of
this analyzer, StandardTokenizer, is generated from a set of regular expression
rules using the Javacc scanner generator." The tokenizer includes rules for identifying
e-mail addresses, dotted acronyms (such as I.B.M.), product numbers such as ISBNs and
similar alphanumeric identifiers, words with embedded apostrophes, and other words
with surrounding punctuation and whitespace stripped.

When porting StandardTokenizer to Lucille (as standard tokenizer),
the PLY package was used to construct a lexical scanner from a set of regular expression

rules, taken from the Javacc definition of StandardTokenizer in Lucene.

'From Lucene 2.3 onwards, StandardTokenizer is instead generated by the JFlex scanner genera-

tor. See https://issues.apache.org/jira/browse/LUCENE- 966.

17

https://issues.apache.org/jira/browse/LUCENE-966

4.1 PLY

PLY (http://www.dabeaz.com/ply/), short for Python Lex-Yacc, is a Python im-
plementation of a lexical scanner generator and parser generator, in the style of lex/yacc.

PLY was originally designed as teaching tool, therefore greater emphasis is placed on
informative error messages and not on execution efficiency. Unlike other lexical scanner
generators, no intermediate code generation phase is used. Instead, when tokenizing
PLY simply iterates across all regular expressions in the rule-set in order of decreasing
length, and uses the builtin Python regular expression module (re) to test for a match
against the remaining input. Unfortunately this results in particularly poor performance
for rule-sets where many tokens share a common initial substring, as is the case for
standard tokenizer, because the same initial substrings are scanned repeatedly
by the re module.

Figure 4.1 shows a snippet of the rule definitions in Python, from which PLY builds
a Lexer object at runtime. The string formatting operator (%) is used here to include

other regular expressions defined earlier in the module.

Figure 4.1: A snippet of the PLY rule definitions

@TOKEN (ur'$% (t ALPHANUM) s ([.\-_1% (t_ ALPHANUM) s) *@% (t_ ALPHANUM) s'
ur' ([.\-1%(t_ALPHANUM)s)+' % locals())
def t EMAIL(self, t): return t

@TOKEN(ur'%(t_ALPHANUM)S(\.%(t_ALPHANUM)s)+' % locals())
def t HOST(self, t): return t

@TOKEN (ur' (% (ALPHA)s\.) {2,}' % locals())
def t ACRONYM (self, t): return t

4.2 RE2C

RE2C (http://re2c.org/), originally published in [13], is an open-source lexical
scanner generator written in C. Like other similar tools, it accepts a set of regular expres-
sions describing tokens to be matched, along with C code defining the action to be taken
when a match is found. It acts a preprocessor of C source files; in the original source
file a special comment beginning with /* I re2c is inserted, containing the regular

expression rules and code to be executed when each token is matched.

18

http://www.dabeaz.com/ply/
http://re2c.org/

Because RE2C is designed to be adapted to a wide variety of applications, it does
not have any ability to read its input from some source. Instead, the pattern matcher
works with pointers into a pre-existing buffer; calling code must provide a number of
definitions to control its behaviour:

+ YYCTYPE is defined to be the character type (char, wchar t, etc) which the

pattern matcher is to work with;

¢ YYCURSOR is declared as a YYCTYPE* variable, and must be initialised to point
to the first character of the input string;

+ YYMARKER must also be declared as a YYCTYPE* variable, for internal use by the
pattern matcher for implementing look-ahead;

+ YYLIMIT may also be defined, as a YYCTYPE* expression pointing to the last
position in the input string, along with a macro YYFILL, which is called by the
pattern matcher when YYLIMIT is reached (these two definitions are optional).

RE2C supports a number of strategies for generating pattern-matching code. By
default, the generated code uses a series of (possibly nested) i f and goto statements, as
in the example output given in Figure 4.2. RE2C can also make use of “computed gotos’,

a GCC language extension. These are faster, at the cost of much greater executable size.

Figure 4.2: A snippet of the code generated by RE2C using nested 1fs

yyl9:
++Cursor;

yych = *cursor;

yy20:
if (yych <= 0x00BF) {
if (yych <= '9') {
if (yych <= ',') goto yyl3;
if (yych <= '.') goto yy21;

4.3 Implementing the replacement standard tokenizer

In order to make use of RE2C for standard tokenizer, an extension module
named analysis. standard was developed. This module defines a class named
standard tokenizer which supports the Python iterator protocol. Like the PLY
version of standard_tokenizer, it is constructed with a unicode object as its
input buffer, and returns a new token each time the next () method is called. The

next () method, implemented in C by the StandardTokenizer iternext

19

function, uses RE2C to scan for the next matching token, and returns a Python-level
Token object constructed from it.

The implementation of standard tokenizer takes advantage of the fact that
Python unicode objects are NUL-terminated, by defining a catch-all rule at the end of
the rule-set with pattern [*]. This pattern matches characters which are ignored by the
tokenizer (e.g. whitespace), but it also matches the NUL character, so the C action code
associated with this rule can test whether the end of the input buffer has been reached
yet. This allows YYLIMIT to be avoided, which would otherwise cause RE2C to check
for the end of the buffer each time it advances the character position.

Table 4.1 shows the resulting timing for analysing the 20 Newsgroups corpus. List-

ing A.2 shows the complete extension module.

Table 4.1: Analysis time using PLY and RE2C

Operation Using PLY Using RE2C

Analysis (tokens/second) 14,048 204,063

20

Chapter 5
Python-level optimisations

A number of optimisations at the Python level are commonly suggested when
code is found to be running unacceptably slowly (see for example [14, 15, 16]).
These are summarised on the Python wiki at http://wiki.python.org/
moin/PythonSpeed/PerformanceTips. For the most part, these suggestions
consist of avoiding gotchas in the implementation of the Python interpreter: e.g.
before Python 2.5, building a string using concatenation inside a for loop resulted
in quadratic running time, therefore the str.join method was the preferred
alternative. Experienced Python programmers become aware of such issues and know
to avoid them when writing code; in the original version of Lucille these gotchas were
avoided.

One suggested optimisation, however, would not normally be applied automatically
by a Python programmer due to its ugliness and fragility: that is the avoidance of redun-
dant attribute accesses inside loops.

The highly dynamic nature of Python — almost any name in the interpreter can be
rebound to a new value at any time — provides a great deal of flexibility and power for
the programmer, but on the flip-side it means that the interpreter must look up each
name in full every time it is evaluated. Furthermore, attribute lookup in Python is a non-
trivial operation; depending on how the attribute has been defined, it could involve a slot
lookup, a lookup in an instance dict, lookups in class dicts for each type in the method
resolution order, testing for the descriptor protocol, and possibly even execution of arbi-
trary Python code [17]. Figure 5.1 shows C-level profiling of the interpreter, illustrating
the large proportion of execution time spent in PyObject GenericGetAttr, the
Python interpreter function which handles attribute lookups on instances of Python

classes, and 1lookdict string, which handles lookups of string keys in a dict (the

21

http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://wiki.python.org/moin/PythonSpeed/PerformanceTips

majority of which are likely to be associated with attribute lookups).

Figure 5.1: C-level profiling of the Python interpreter during a search operation

% cumulative self self total
time seconds seconds calls s/call s/call name
22.00 10.44 10.44 9345988 0.00 0.00 PyEval EvalFrameEx
10.64 15.49 5.05 266971088 0.00 0.00 lookdict string
6.64 18.64 3.15 94562477 0.00 0.00
PyObject GenericGetAttr

5.75 21.37 2.73 41464984 0.00 0.00 try rich compare
4.84 23.67 2.30 72690002 0.00 0.00

PyUnicodeUCS2 Compare

3.03 25.11 1.44 38027268 0.00 0.00 PyObject Malloc
2.99 26.53 1.42 26377935 0.00 0.00 1listiter next
2.95 27.93 1.40 246313509 0.00 0.00 PyDict GetItem
2.76 29.24 1.31 85794157 0.00 0.00

PyObject RichCompare
2.50 30.42 1.19 29489996 0.00 0.00

PyUnicodeUCS2 Decode

Addressing this overhead has been much discussed in the Python community, but
one common suggestion is that when a name is looked up repeatedly (e.g. inside a for
loop), some speed may be gained by aliasing its value to a local variable. This takes
advantage of an implementation detail of the Python bytecode interpreter: local vari-
ables in each scope are kept in an array and accessed by index (LOAD_FAST bytecode
instruction [18]), which means that referring to local variables is considerably faster than
other kinds of name lookup.

Of course this optimisation is only suitable when it is known that the name in ques-
tion will not be rebound by other code during the execution of the function. It is also of
no benefit if the name lookup never (or rarely) occurs more than once during execution
of the function; in this case the extra local variable access will have a negative impact
on speed.

A disadvantage of this technique is that it makes code more difficult to read and
maintain. For this reason, the technique would normally only be applied judiciously, to
functions which have been shown by profiling to contribute largely to execution time.

To test the impact of this optimisation, Lucille’s search module was carefully ex-
amined for any attribute lookups which occurred more than once in a function body.

These repeated lookups were replaced with a single lookup stored in a local variable.

22

The timing results in Table 5.1 show that these optimisations little positive effect

(and in some cases, a negative effect!) on the execution speed of the search module.

This is because the majority of attribute accesses which occur inside tight loops could

not be aliased as described above, because the value of the attribute changes at each

iteration. This structure could be considered an artefact of the Java origins of the code,

where attribute lookups are a cheap operation, since they are computed statically and

optimised by the JIT compiler.

Table 5.1: Search timing results with and without reduced attribute accesses (using

MMapIndexInput)

Operation

Original

Reduced attribute accesses

Boolean query (milliseconds)
1 required term
1 required, 1 optional term
1 required, 1 prohibited term
2 required, 1 optional term
1 required, 2 optional terms

2 optional, 1 prohibited term

15.796 (0 = 0.312)
28.296 (0 = 0.474)
29.623 (0 = 0.417)
19.095 (0 = 0.395)
38.270 (0 = 0.547)
63.874 (0 = 1.146)

23

16.684 (0 = 0.331)
26.335 (0 = 0.321)
28.088 (0 = 0.353)
18.061 (0 = 0.130)
36.658 (0 = 0.419)
61.351 (0 = 0.407)

24

Chapter 6

Search using CLucene and
Boost.Python

6.1 CLucene

CLucene is a port of Lucene to C++. It is a direct port, that is, its structure adheres
closely to Lucene’s, for the most part retaining the same class names with the same
interfaces." CLucene development typically lags a number of versions behind the latest
release of Lucene, and does not introduce any new features not found in Lucene.

This close adherence to the original makes CLucene ideal for integration into Lucille,
which is also a direct port and can be expected to have (roughly) compatible internal
interfaces.

Once the speed of index reading in Lucille was drastically improved (see Chapter 2),
further profiling showed that methods in the search module were a major factor in exe-
cution time for searches. Asan alternative to the rewrite-it-in-C approach, the existence
of CLucene presented an opportunity to replace the poorly-performing Python version
of the search module with a faster C++ implementation. Because CLucene and Lucille
are both direct ports of Lucene, a replacement search module based on CLucene should
ideally provide equivalent behaviour and search results as the existing Python version.

However Python’s API is entirely C, and makes no provisions for integration with
the higher-level features of C++. Writing Python interfaces for C++ objects by hand
would be a tedious process, but the Boost.Python library provides a solution to this.

"The lack of automatic garbage collection complicates the CLucene code in a number of ways which do

not apply to Lucene.

25

6.2 Boost.Python

Boost (http://www.boost .org) is a collection of open-source C++ libraries pro-
viding useful functionality which is commonly required in C++ projects. It is a proving
ground for new libraries to be included in the C++ standard.

The Boost.Python library takes advantage of C++ template metaprogramming tech-
niques to simplify the interaction of C++ code with the Python C API [19].

The original purpose of Boost.Python was to simplify the process of exposing C++
classes to the Python interpreter as Python classes. It is capable of exposing C++ meth-
ods, operators, and constructors, and default arguments and Python keyword argu-
ments are supported. It includes features for automatically managing object references
and ownership of C++ objects which have been passed into the Python interpreter,
using a number of different call policies implemented as template functions.

Boost.Python also supports going in the opposite direction — that is, it provides
simplified access to the object manipulation parts of the Python C API. At its core
lies the Boost.Python object class, which manages a reference to a PyObject*, the
basic building block of the Python interpreter. The object class provides methods for
generic manipulation of Python objects, as well as overridden operators for arithmetic,
comparison, key/index lookup, etc. These methods and operators are translated to
Python C API calls on the underlying PyObject *, with appropriate error checking.

Table 6.1 shows some examples of the use of the object class.

Table 6.1: Some examples of using the Boost.Python object class, and the equivalent
Python API calls (without error checking)

Using Boost.Python Using the Python API

object o; PyObject *o;
o.attr ("doc") PyObject GetAttrString(o, "doc")
o += 4 PyNumber InPlaceAdd (o, PyInt FromLong(4))

extract<double> (o) PyFloat AsDouble (PyNumber Float (o))

This allows C++ code which interfaces with Python to be written much more simply
than using the API directly. More importantly, it also automates the tedious and error-
prone management of reference counts, which all code using the Python API must do.

For convenience Boost.Python also provides a number of specialised subclasses of

the object class: str, 1ist, tuple, dict, and long . These classes correspond

26

http://www.boost.org

to the most common builtin Python data types, and provide methods and operators
which call the respective parts of the Python API directly, rather than the generic object

manipulation API. Table 6.2 illustrates some examples of these derived object types.

Table 6.2: Some examples of using Boost.Python’s derived object types

Using Boost.Python Using the Python API

object o, tuple t, str s; PyObject *o, *t, *s;

ol[2] PyObject GetItem(o, PyInt FromLong(2))
t[2] PyTuple GET ITEM(o, 2)

s %t PyString Format (s, t)

extract<char *>(s) PyString AS STRING(s)

Boost.Python also provides facilities for extracting native C++ data types (e.g. int,
std: : string) from convertible Python objects, translating C++ exceptions (which
are not handled by the C-only interpreter) into Python exceptions, converting between

Python and STL iterator types, and other features.

6.3 Integrating the CLucene search module

The search module of CLucene has only a small number of direct dependencies on
classes in other modules, namely it uses the IndexReader class, and its related classes
Term, TermDocs, and TermEnum, for accessing term data from the index. This means
the module can be extracted from the CLucene code, along with some common utility
modules, and used independently.

In addition to constructing a Python wrapper around the C++ search module, it
was necessary to provide stub versions of these classes in C++ which allows the search
module to call back into Python. The header files for these stub classes were cut back
from their original versions, to remove methods which weren't required by the search
module, and return types and parameter types were modified where necessary to work
with Boost.Python objects rather than the original concrete CLucene types. A stub
implementation was then produced for each of these classes, in which all method calls
are simply translated to the appropriate method of an underlying Boost.Python object.

A number of changes were also made to the CLucene search module when inte-

grating it: primarily the removal of unused references to CLucene header files, but also

27

some changes were necessary to account for slight interface differences between Lucille
and CLucene.

Listing A.3 shows the implementation of these stub classes, along with a patch
of the changes made to the CLucene search module to accommodate them, and the
Boost.Python module for exporting to Python.

Table 6.3 shows the timing results after integrating the CLucene search module. The
actual improvement in speed was much less than anticipated. This can be attributed to
the overhead incurred at the boundary between Python and C++ code, compounded
by the additional work which Boost.Python must do in correctly managing ownership

of references to C++ objects and handling exceptions.

Table 6.3: Search timing results comparing original and CLucene-based search module

(using MMapIndexInput)
CLucene search

Operation Original

Boolean query (milliseconds)

1 required term

1 required, 1 optional term

1 required, 1 prohibited term
2 required, 1 optional term

1 required, 2 optional terms

2 optional, 1 prohibited term

15.796 (0 = 0.312)
28.296 (0 = 0.474)
29.623 (0= 0.417)
19.095 (0 = 0.395)
38.270 (0 = 0.547)
63.874 (0 = 1.146)

10.145 (0 = 0.130)
17.029 (0 = 0.146)
15.215 (0 = 0.197)
36.630 (0 = 0.570)
36.990 (0 = 0.653)
34.336 (0 = 0.533)

During implementation of the search module, many iterations were spent chasing
segmentation faults arising when Python or C++ code was still referring to objects
which the other had cleaned up. This demonstrates that correct handling of memory
ownership and reference lifetime between Python and C++ is tricky, and that great care

must be taken in spite of all the facilities provided by Boost.Python to ease this task.

6.4 Future directions

When testing the integration of the CLucene search module, a number of discrepan-
cies in search results were observed. Future work could determine the cause of these
discrepancies and iron out any differences between the original and CLucene search

implementations which would cause results to differ.

28

Chapter 7

Conclusion

In the previous chapters a number of techniques for improving the performance of the

Lucille search and indexing library are described. The results of these improvements

are summarised in Table 7.1.

Table 7.1: Summary of timing results

Operation Original BaseII MMapII Psyco CLucene
Boolean query (milliseconds)
1 required term 24.868 21.596 15.796 9.394 10.145
1 required, 1 optional term 44.513 36.903 28.206 12.738 17.029
1 required, 1 prohibited term 46.162 38.733 29.623 12.967 15.215
2 required, 1 optional term 49.699 32.526 19.095 10.175 36.630
1 required, 2 optional terms 71.054 54.776 38.270 17.515 36.990
2 optional, 1 prohibited term 100.348 82.206 63.874 31.793 34.336
Operation Original Using RE2C
Analysis (tokens/second) 14,048 204,063

The traditional approach to optimising a piece of code in a high-level dynamic lan-

guage, such as Python, is to move time-critical sections to a compiled language and

write an interface back to the higher-level language. This represents a trade-off between

all the benefits of the higher-level language on the one hand — clarity, brevity, ease of

maintenance, rapid development — and on the other hand, speed. In the case of Python,

29

making these kinds of trade-offs is eased by the simple and clear Python C API, and by
other tools like Boost.Python.

Some overhead is unavoidably incurred at the boundary between Python and other
languages, both in terms of execution speed and development effort. The larger the gap
between the two languages at this boundary, the greater its overhead: for instance, a
greater overhead is incurred in wrapping C++ objects using Boost.Python, than directly
implementing Python objects in C. Therefore an important goal when moving is to
minimise such boundaries.

The replacement of PLY with RE2C, described in Chapter 4, in particular yielded
an impressive 13x speedup in the standard analyzer class with relatively little
difficulty, demonstrating that careful choice of tools is just as important for performance
as choice of algorithms and language.

The use of the Psyco “just-in-time specialiser’, described in Chapter 3, yielded an
even more impressive speed increase for even less effort, but the serious limitation of

only supporting the x86 architecture rules its use in many projects.

30

References

[1]

[2]

(5]

[6]

J. Roskind, G. van Rossum, and A. Rigo, The Python profilers, 1994. Available from
http://docs.python.org/lib/profile.html

G. Salton, A. Wong, and C. S. Yang, “A vector space model for
automatic indexing,” Communications of the ACM, vol. 18, no. 11, p. 613—620,
1975. Available from http://www.cs.uiuc.edu/class/fa05/cs511/
Spring05/other papers/pé6l3-salton.pdf

G. van Rossum, “Python 0.9.1," article <2963@charon. cwi.nl> in newsgroup
alt.sources, 19 February 1991, available from http://ftp.funet.fi/
pub/archive/alt.sources/volume91/Feb/910220.10.gz ff.

S. Ferg, “Python and Java: a side-by-side comparison,” 2007. Available from http:

//www.ferg.org/projects/python java side-by-side.html

Sun Microsystems, Java Native Interface, 2006. Available from http://java.

sun.com/javase/6/docs/technotes/guides/jni/

D. E. Knuth, The art of computer programming, volume 1: Fundamental algorithms,
srd ed. Addison-Wesley, 1997.

K. Lang, “The 20 Newsgroups data set,” 1996. Available from http://people.

csail.mit.edu/jrennie/20Newsgroups/

The Apache Software Foundation, Apache Lucene index file formats, 2008,
version 2.1. Available from http://lucene.apache.org/java/2 1 0/
fileformats.html

G. van Rossum, Extending and embedding the Python interpreter, 2007,
version 2.5.1. Available from http://www.python.org/doc/2.5.1/ext/

31

http://docs.python.org/lib/profile.html
http://www.cs.uiuc.edu/class/fa05/cs511/Spring05/other_papers/p613-salton.pdf
http://www.cs.uiuc.edu/class/fa05/cs511/Spring05/other_papers/p613-salton.pdf
<2963@charon.cwi.nl>
http://ftp.funet.fi/pub/archive/alt.sources/volume91/Feb/910220.10.gz
http://ftp.funet.fi/pub/archive/alt.sources/volume91/Feb/910220.10.gz
http://www.ferg.org/projects/python_java_side-by-side.html
http://www.ferg.org/projects/python_java_side-by-side.html
http://java.sun.com/javase/6/docs/technotes/guides/jni/
http://java.sun.com/javase/6/docs/technotes/guides/jni/
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://lucene.apache.org/java/2_1_0/fileformats.html
http://lucene.apache.org/java/2_1_0/fileformats.html
http://www.python.org/doc/2.5.1/ext/

[10]

(13]

[15]

18]

[19]

G. van Rossum, Python/C API reference manual, 2007, version 2.5.1. Available

from http://www.python.org/doc/2.5.1/api/

Standard for information technology — portable operating system interface
(POSIX). System interfaces, 1EEE Std. 1003.1-2004, 2004. Available from

http://ieeexplore.ieee.org/servlet/opac?punumber=9157

A. Rigo, “Representation-based just-in-time specialization and the Psyco
prototype for Python,” in PEPM ‘04: Proceedings of the 2004 ACM SIGPLAN
symposium on partial evaluation and semantics-based program manipulation.
ACM Press, 2004, p. 15—26. Available from http://psyco.sourceforge.
net/theory psyco.pdf

P. Bumbulis and D. D. Cowan, “RE2C: a more versatile scanner generator,’
ACM letters on programming languages and systems, vol. 2, no. 1—4, p. 70-84,
March—December 1993. Available from http://citeseer.ist.psu.edu/
bumbulis94rec.html

S. Montanaro, “Python Enhancement Proposal 266: Optimizing global
variable/attribute access,” 2001. Available from http://www.python.org/
dev/peps/pep-0266/

D. Necas, “Python optimization tips, 2004. Available from
http://web.archive.org/web/20060716234857 /http://trific.

ath.cx/resources/python/optimization/

G. van Rossum, “An optimization anecdote,” 2002. Available from http:

//www.python.org/doc/essays/list2str/

S. Chaturvedi, “Python attributes and methods,” 2005. Available from http:
//www.cafepy.com/article/python attributes and methods/

G. van Rossum, Python Library Reference, 2007, version 2.5.1. Available from
http://www.python.org/doc/2.5.1/1ib/

D. Abrahams and R. W. Grosse-Kunstleve, “Building hybrid systems with
Boost.Python,” 2003. Available from http://www.boost-consulting.
com/writing/bpl.html

32

http://www.python.org/doc/2.5.1/api/
http://ieeexplore.ieee.org/servlet/opac?punumber=9157
http://psyco.sourceforge.net/theory_psyco.pdf
http://psyco.sourceforge.net/theory_psyco.pdf
http://citeseer.ist.psu.edu/bumbulis94rec.html
http://citeseer.ist.psu.edu/bumbulis94rec.html
http://www.python.org/dev/peps/pep-0266/
http://www.python.org/dev/peps/pep-0266/
http://web.archive.org/web/20060716234857/http://trific.ath.cx/resources/python/optimization/
http://web.archive.org/web/20060716234857/http://trific.ath.cx/resources/python/optimization/
http://www.python.org/doc/essays/list2str/
http://www.python.org/doc/essays/list2str/
http://www.cafepy.com/article/python_attributes_and_methods/
http://www.cafepy.com/article/python_attributes_and_methods/
http://www.python.org/doc/2.5.1/lib/
http://www.boost-consulting.com/writing/bpl.html
http://www.boost-consulting.com/writing/bpl.html

10

20

/*

/*

*

Appendix A

Code listings

Al store extension module

__storemodule. c: C source file implementing the store extension module

Copyright 2007 Dan Callaghan <djce@djc.id.au> */

This file is part of Lucille, based on Apache Lucene

<http://lucene.apache.orgs>.

Lucille is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any later

version.

Lucille is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.

*/

#include <Python.hs>

#include "structmember.h"

/*

The following struct definition is copied verbatim from

33

30

40

50

60

70

* Modules/mmapmodule.c in the Python source. This makes the code here fragile
* (if Python update the mmap module, we have to update this) and means that
* compiled versions of this extension may not be binary compatible across

* Python releases or even compiler versions.

* However it does let us get access to the mmap objects guts without any
* overhead of going back through the Python interpreter.
*/

#ifndef MS_WINDOWS
#define UNIX
#endif

typedef struct {
PyObject HEAD
char * data;
size t size;

size t pos;

#ifdef MS WINDOWS
HANDLE map_ handle;
HANDLE file handle;
char * tagname;

#endif

#ifdef UNIX
int f£d;
#endif

int access;

} mmap object;

#ifdef UNIX
#include <sys/mman.h>
#endif

/* End code copied from Modules/mmapmodule.c */

static PyObject *threading module = NULL;
static PyObject *mmap module = NULL;
static PyObject *zero = NULL;

static PyObject *four = NULL;

static PyObject *eight = NULL;

34

static PyObject *str read bytes = NULL;
static PyObject *str read byte = NULL;

#define BaseIndexInput doc "filepos lock should be acquired by callers around
blocks which expect the \n" \

"file position to remain consistent. "

#define SELF_READ BYTE(in, in obj, error) \
if ((in_obj = PyObject CallMethodObjArgs ((PyObject *)self, str read byte, NULL)
) == NULL) \
80 goto error; \
if ((in = PyInt AsLong(in obj)) < 0) \
goto error; \
Py DECREF (in_obj)

typedef struct {

PyObject HEAD

PyObject *filepos lock;
} BaseIndexInput;

90 static PyMemberDef BaselIndexInput members[] = {
{"filepos lock", T OBJECT EX, offsetof (BaseIndexInput, filepos lock), 0,
"for callers, to hold around seek operations"},
{NULL} /* sentinel */

}i

static PyObject *BaselIndexInput new (PyTypeObject *type, PyObject *args,
PyObject *kwargs)

BaseIndexInput *self;

100 if ((self = (BaseIndexInput *)type->tp alloc(type, 0)) == NULL)
goto error;
self->filepos lock = NULL;
return (PyObject *)self;

error:
return NULL;

}
static int BaseIndexInput init (BaseIndexInput *self, PyObject *args, PyObject *
kwargs) {
110 /* accept any args but ignore them */

/*static char *kwlist[] = {NULL};

35

120

130

140

150

if (!PyArg ParseTupleAndKeywords (args, kwargs, "Sk", kwlist,
&filename, &self->length))

goto error;*/

if (! (self->filepos lock = PyObject CallMethod(threading module, "RLock",
NULL)))

goto error;

return 0O;

error:

return -1;

static void BaseIndexInput dealloc (BaseIndexInput *self)

Py XDECREF (self->filepos lock) ;
self->ob type->tp free((PyObject *)self);

static PyObject *BaseIndexInput read chars(BaseIndexInput *self, PyObject *args)

unsigned long n = -1;
if (!PyArg ParseTuple(args, "k", &n))
return NULL;
PyObject *retval = NULL;
if (! (retval = PyUnicode FromUnicode (NULL, n)))
return NULL;
Py UNICODE *buff = PyUnicode_AS_UNICODE (retval) ;
int i;
for (i = 0; i < mn; i ++) {
PyObject *in obj;
long in;
SELF_READ BYTE(in, in_obj, error);
unsigned char b = (unsigned char) in;
if ((b & 0x80) == 0) {

buff[i] = b;
} else if ((b & 0xE0) != 0xEO0) {
SELF_READ BYTE(in, in_obj, error);
unsigned char b lo = (unsigned char) in;
buff[i] = (b & 0x1F) << 6 | (b_lo & O0x3F);
} else {
SELF_READ BYTE(in, in_obj, error);
unsigned char b mid = (unsigned char) in;
SELF_READ BYTE(in, in obj, error);
unsigned char b _lo = (unsigned char) in;

36

{

buff[i] = (b & O0xO0F) << 12 | (b_mid & 0x3F) << 6 | (b_lo & O0x3F);

}
}
return retval;
160
error:
Py DECREF (retval) ;
return NULL;
}
static PyObject *BaseIndexInput skip chars(BaseIndexInput *self, PyObject *args) {
unsigned long n = -1;
if (!PyArg ParseTuple(args, "k", &n))
return NULL;
170 int i;
for (i = 0; 1 < n; 1 ++) {
PyObject *in obj;
long in;
SELF_READ BYTE (in, in obj, error);
unsigned char b = (unsigned char) in;
if ((b & 0x80) == 0) {
/* pass */
} else if ((b & 0xE0) != 0xEO0) {
SELF_READ BYTE(in, in obj, error);
180 } else {
SELF_READ BYTE(in, in obj, error);
SELF_READ BYTE(in, in_obj, error);
}
}
Py RETURN_NONE;
error:
return NULL;
}
190

static PyObject *BaseIndexInput read int (BaseIndexInput *self, PyObject *) {
/* METH NOARGS */
PyObject *in obj;
if (! (in _obj = PyObject CallMethodObjArgs((PyObject *)self, str read bytes,
four, NULL)))
return NULL;

unsigned char *in;

Py ssize t in len;

37

200 PyString AsStringAndSize(in obj, &in, &in len);
if (in_len != 4) {
Py DECREF (in obj) ;
return PyErr Format (PyExc ValueError,

"read bytes(4) returned string of length %zd", in len);

long n = (long) (in[0] << 24 | in[1] << 16 | in[2] << 8 | in[3]);
Py DECREF (in_obj) ;
return PyInt FromLong (n) ;

210 |}

static PyObject *BaseIndexInput read long(BaseIndexInput *self, PyObject *) {
/* METH NOARGS */
PyObject *in obj;
if (! (in obj = PyObject CallMethodObjArgs((PyObject *)self, str read bytes,
eight, NULL)))
return NULL;

unsigned char *in;
220 Py ssize t in len;
PyString AsStringAndSize (in obj, &in, &in len);
if (in_len != 8) {
Py DECREF (in_obj) ;
return PyErr Format (PyExc ValueError,

"read bytes(8) returned string of length %zd", in len);

PY LONG LONG n = ((PY LONG LONG) in[0] << 56 |
(PY_LONG LONG) in[1] << 48 |

230 (PY LONG_LONG) in[2] << 40 |
(PY_LONG_LONG) in[3] << 32 |
(PY LONG LONG) in[4] << 24 |
(PY LONG LONG) in[5] << 16 |
(PY _LONG LONG) in[6] << 8 |
in{71);

)
)
)
)
)
)

return PyLong FromLongLong (n) ;

static PyObject *BaselIndexInput read vint (BaseIndexInput *self, PyObject *) {
240 /* METH NOARGS */
PyObject *in obj;
long in;

unsigned long long val = 0;

38

unsigned int shift = 0;
do {
SELF_READ BYTE(in, in_obj, error);
val += ((unsigned char) in & 127) << shift;
shift += 7;
} while ((unsigned char) in & 128);
250 return PyLong FromUnsignedLongLong (val) ;

error:
return NULL;

static PyObject *BaseIndexInput read string(BaselIndexInput *self, PyObject *) {
/* METH NOARGS */
PyObject *retval = NULL;
PyObject *in obj;

260 int in;

/* read _vint */

unsigned long long n = 0;

unsigned int shift = 0;

do {
SELF_READ BYTE(in, in_obj, error no retval);
n += ((unsigned char) in & 127) << shift;
shift += 7;

} while ((unsigned char) in & 128);

270
/* read_chars */
if (! (retval = PyUnicode FromUnicode (NULL, n)))
return NULL;
Py UNICODE *buff = PyUnicode AS UNICODE (retval) ;
int i;
for (i = 0; 1 < n; 1 ++) {
SELF_READ BYTE(in, in obj, error);
unsigned char b = (unsigned char) in;
if ((b & 0x80) == 0) {
280 buff [i] = b;
} else if ((b & 0xEO0) != OxE0) ({
SELF_READ BYTE(in, in obj, error);
unsigned char b lo = (unsigned char) in;
buffli] = (b & 0x1F) << 6 | (b_lo & O0x3F);
} else {

SELF_READ BYTE(in, in obj, error);

unsigned char b mid = (unsigned char) in;

39

290

300

310

320

SELF_READ BYTE(in, in obj, error);
unsigned char b lo = (unsigned char) in;
buff[i] = (b & 0x0F) << 12 | (b_mid & 0x3F) << 6 | (b _lo & O0x3F);

}

return retval;

error:

Py DECREF (retval) ;

error no_retval:

return NULL;

static PyMethodDef BaseIndexInput methods[] = {

bi

{"read chars", (PyCFunction) BaselIndexInput read chars, METH VARARGS,
"Reads the given number of characters as a unicode.\n"
u\nn

"Lucene uses Java's \"modified UTF-8\":\n"

"<http://java.sun.com/j2se/1.5.0/docs/api/java/io/Datalnput.html#modified-

utf-8>."},

{"skip chars", (PyCFunction) BaselIndexInput skip chars, METH_ VARARGS,
"Like read chars, but discards the characters read‘"},

{"read int", (PyCFunction) BaseIndexInput read int, METH NOARGS,
"Reads a signed 32-bit integer value."}

{"read long", (PyCFunction) BaselIndexInput read long, METH NOARGS,
"Reads a signed 64-bit integer value."},

{"read vint", (PyCFunction) BaselIndexInput read vint, METH NOARGS,
"Reads a Lucene variable-length integer value.\n"

n\nn

"Lucene also defines #readVLong(), but read vint can be used for both."},

{"read string", (PyCFunction) BaseIndexInput read string, METH NOARGS,
"Reads a Lucene variable-length string (unicode) value."},
{(NULL} /* sentinel */

static PyTypeObject BaseIndexInputType = {

PyObject HEAD INIT (NULL)
0, /* ob_size */

"lucille. store.BaseIndexInput",/* tp name */

sizeof (BaseIndexInput), /* tp basicsize */

0, /* tp itemsize */
(destructor) BaseIndexInput dealloc, /* tp dealloc */
0, /* tp print */

0, /* tp getattr */

40

/* tp setattr */

/* tp compare */
/* tp repr */
/* tp_as_number */

/* tp_as_sequence */

/* tp as mapping */

/* tp hash */

/* tp call */

/* tp str */

/* tp getattro */

/* tp setattro */

/* tp_as buffer */

Py TPFLAGS DEFAULT | Py TPFLAGS BASETYPE, /* tp flags */
BaseIndexInput doc, /* tp doc */

340

O O O O O O O O o o o o

, /* tp traverse */

, /* tp clear */

, /* tp richcompare */
, /* tp weaklistoffset */
, /* tp iter */

' /* tp iternext */
BaseIndexInput methods, /* tp methods */
BaseIndexInput members, /* tp members */

/* tp getset */

/* tp base */

/* tp dict */

/* tp descr get */
/* tp descr set */
/* tp dictoffset */
initproc) BaseIndexInput init, /* tp init */
/* tp_alloc */

BaseIndexInput new, /* tp new */

0
0
0
0
0
0

350

O ~ O O O O O o

360

#define MMapIndexInput doc "IndexInput implementation that uses mmap() for

accessing files."

typedef struct
PyObject HEAD
PyObject *filepos lock;
370 mmap_ object *mmap;
Py ssize_t filepos;
Py ssize t offset;

Py ssize t length; /* the entire file is always mapped */

41

} MMapIndexInput;

static PyMemberDef MMapIndexInput members[] = {

{"filepos lock", T OBJECT EX, offsetof (MMapIndexInput, filepos lock), RO,
"for callers, to hold around seek operations“},

{"mmap", T OBJECT_EX, offsetof (MMapIndexInput, mmap), RO,

380 "underlying mmap object"},

/* XXX these should be T PYSSIZET, but that is missing from Python 2.5 */

{”offset", T LONGLONG, offsetof (MMapIndexInput, offset), O,
"file position offset (for compound files)"},

{"length", T LONGLONG, offsetof (MMapIndexInput, length), O,

"valid file length (may be less than real file length, for compound files)"
j»
{NULL} /* sentinel */

bi

static PyObject *MMapIndexInput new (PyTypeObject *type, PyObject *args,
390 PyObject *kwargs)
MMapIndexInput *self;

if ((self = (MMapIndexInput *)type->tp alloc(type, 0)) == NULL)
goto error;

self->filepos_lock = NULL;
self->mmap = NULL;
return (PyObject *)self;

error:

400 return NULL;

static int MMapIndexInput init (MMapIndexInput *self, PyObject *args, PyObject *
kwargs) {

PyObject *file;

Py ssize t length;

static char *kwlist[] = {"file", "length", NULL};

if (!PyArg ParseTupleAndKeywords (args, kwargs, "On", kwlist,
&file, &length))

goto error;
410

if (! (self->filepos lock = PyObject CallMethod(threading module, "RLock",

NULL)))

goto error;

PyObject *fd obj;

42

int £fd;
if (! (fd obj = PyObject CallMethod(file, "fileno", NULL)))
goto error;
fd = PyInt AsLong(fd obj) ;
420 Py DECREF (fd_obj) ;
if (fd == -1)

goto error;

#ifdef MS_ WINDOWS
PyObject *access_read;
if (! (access read = PyObject GetAttrString(mmap module, "ACCESS READ")))

goto error;

self->mmap = (mmap object *)PyObject CallMethod(mmap module, "mmap", "insO",
fd, 0, NULL, access_read);
430 Py DECREF (access_read) ;
#else
self->mmap = (mmap object *)PyObject CallMethod (mmap module, "mmap", "inii",
fd, 0, MAP SHARED, PROT_READ) ;
#endif
if (!self->mmap)

goto error;

self->filepos = 0;
self->offset = 0;
440 self->length = length;

return O;

error:

return -1;

static PyObject *MMapIndexInput clone (MMapIndexInput *self, PyObject *)
/* METH NOARGS */
450 MMapIndexInput *clone = NULL;

if (! (clone = (MMapIndexInput *)self->ob type->tp new(self->ob type,
NULL, NULL)))
return NULL;

if (! (clone->filepos lock = PyObject CallMethod(threading module, "RLock",
NULL)))
goto error;
Py INCREF (self->mmap) ;

43

460 clone->mmap = self->mmap;
clone->filepos = self->filepos;

clone->offset = self->offset;

clone->length = self->length;
return (PyObject *)clone;

error:
Py XDECREF (clone) ;
return NULL;
470}

static void MMapIndexInput dealloc (MMapIndexInput *self) {
Py XDECREF (self->filepos lock) ;
Py XDECREF (self->mmap) ;
self->o0b type->tp free((PyObject *)self);

static PyObject *MMapIndexInput tell (MMapIndexInput *self, PyObject *) {
Vad METH NOARGS */
480 return PyInt FromSsize t (self->filepos - self->offset);

static PyObject *MMapIndexInput seek (MMapIndexInput *self, PyObject *args)
Py ssize t pos;
if (!PyArg ParseTuple(args, "n", &pos))
return NULL;
if (pos > self-slength) {
PyErr SetString (PyExc ValueError, "seek beyond end of mmap") ;
return NULL;
490 }
self->filepos = self-soffset + pos;
Py RETURN_ NONE;

static inline unsigned char MMapIndexInput read byte (MMapIndexInput *self) {
return self->mmap->datalself->filepos ++];

static inline void MMapIndexInput read bytes (MMapIndexInput *self,
500 unsigned char **buff, Py ssize t n) {
unsigned char *retval = (unsigned char *)self->mmap->data + self->filepos;
self->filepos += n;

*buff = retval;

44

static PyObject *MMapIndexInput read byte (MMapIndexInput *self, PyObject *) {
/* METH NOARGS */
return Py BuildvValue ("B", MMapIndexInput read byte(self));

510
static PyObject *MMapIndexInput read bytes (MMapIndexInput *self, PyObject *args) {
Py ssize t n;
if (!PyArg ParseTuple(args, "n", &n))
return NULL;
unsigned char *buff;
MMapIndexInput read bytes(self, &buff, n);
return Py Buildvalue("s#", buff, n);

520 static PyObject *MMapIndexInput read chars (MMapIndexInput *self, PyObject *args) {
unsigned long n = -1;
if (!PyArg ParseTuple(args, "k", &n))
return NULL;
PyObject *retval = NULL;
if (! (retval = PyUnicode FromUnicode (NULL, n)))
return NULL;
Py UNICODE *buff = PyUnicode AS UNICODE (retval) ;

int i;
for (i = 0; 1 < n; 1 ++) {
530 unsigned char b = MMapIndexInput__read byte(self);
if ((b & 0x80) == 0) {
buff[i] = b;
} else if ((b & 0xE0) != 0xEO0) {
unsigned char b lo = MMapIndexInput read byte (self);
buffli] = (b & O0x1F) << 6 | (b_lo & O0x3F);
} else {
unsigned char b mid = MMapIndexInput read byte(self);
unsigned char b lo = MMapIndexInput read byte (self);
buff[i] = (b & 0x0F) << 12 | (b_mid & 0x3F) << 6 | (b_lo & O0x3F);
540 }

}

return retval;

static PyObject *MMapIndexInput skip chars(MMapIndexInput *self, PyObject *args) {
unsigned long n = -1;

if (!PyArg ParseTuple(args, "k", &n))

45

550

560

570

580

590

return NULL;
int i;

for (i = 0; 1 < n; i +

unsigned char b = MMapIndexInput read byte(self);

if ((b & 0x80) ==
/* pass */

+) |

0) {

} else if ((b & O0xEO0) !=
MMapIndexInput read byte (self) ;

} else {

0xEO0)

{

MMapIndexInput read byte(self);

MMapIndexInput read byte(self);

}

Py RETURN_NONE;

static PyObject *MMapIndexInput read int (MMapIndexInput *self,

/* METH NOARGS */

unsigned char *in;

MMapIndexInput read bytes(self,

static PyObject *MMapIndexInput read long(MMapIndexInput *self,

/* METH NOARGS */

unsigned char *in;

MMapIndexInput read bytes(self, &in, 8);

PY LONG LONG n = ((PY LONG LONG) in[0] << 56 |
(PY_LONG_LONG) in[1l] << 48 |
(PY_LONG_LONG) in[2] << 40 |
(PY_LONG_LONG) in[3] << 32 |
(PY LONG LONG) in[4] << 24 |
(PY LONG LONG) in[5] << 16 |
(PY_LONG_LONG) in[6] << 8 |

in[71);

return PyLong FromLongLong (n) ;

static PyObject *MMapIndexInput read vint (MMapIndexInput *self,

/* METH NOARGS */
unsigned char in;

unsigned long long val

= 0;

unsigned int shift = 0;

&in, 4);
long n = (long) (in[0] << 24 | in[1] << 16 | in[2] << 8 | in[3]);
return PyInt FromLong (n) ;

46

PyObject *)

PyObject *)

PyObject *)

{

{

{

do {
in = MMapIndexInput read byte(self) ;
val += (in & 127) << shift;
shift += 7;

} while (in & 128);

return PylLong FromUnsignedLongLong (val) ;

600 static PyObject *MMapIndexInput read string(MMapIndexInput *self, PyObject *) ({
/* METH NOARGS */
PyObject *retval = NULL;

/* read _vint */
unsigned char in;

unsigned long long n = 0;

unsigned int shift = 0;
do {
in = MMapIndexInput read byte(self) ;
610 n += (in & 127) << shift;
shift += 7;

} while (in & 128);

/* read_chars */

if (! (retval = PyUnicode FromUnicode (NULL, n)))
return NULL;

Py UNICODE *buff = PyUnicode AS UNICODE (retval) ;

int i;
for (i = 0; 1 < n; 1 ++) {
620 unsigned char b = MMapIndexInput read byte(self) ;
if ((b & 0x80) == 0) {
buff[i]l = b;
} else if ((b & O0xE0) != 0xEO0)
unsigned char b lo = MMapIndexInput read byte(self) ;
buff[i] = (b & 0x1F) << 6 | (b_lo & O0x3F);
} else {
unsigned char b mid = MMapIndexInput read byte(self);
unsigned char b_lo = MMapIndexInput read byte (self);
buff[i] = (b & 0x0F) << 12 | (b _mid & 0x3F) << 6 | (b _lo & O0x3F);
630 }

}

return retval;

static PyMethodDef MMapIndexInput methods[] = {

47

640

650

660

670

n
n
n
n
n
n
n
n
n
n
n

{
{
{
{
{
{
{
{
{
{
{
{

Vi

static

clone", (PyCFunction) MMapIndexInput clone, METH NOARGS, NULL},

tell", (PyCFunction) MMapIndexInput tell, METH NOARGS, NULL},

seek", (PyCFunction) MMapIndexInput_ seek, METH VARARGS, NULL},

read byte", (PyCFunction) MMapIndexInput read byte, METH NOARGS, NULL},
read bytes", (PyCFunction) MMapIndexInput read bytes, METH VARARGS, NULL},
read chars", (PyCFunction) MMapIndexInput read chars, METH VARARGS, NULL},
skip chars", (PyCFunction) MMapIndexInput skip chars, METH VARARGS, NULL},
read_int", (PyCFunction) MMapIndexInput read_ int, METH NOARGS, NULL},

read long", (PyCFunction) MMapIndexInput read long, METH NOARGS, NULL},
read vint", (PyCFunction) MMapIndexInput read vint, METH NOARGS, NULL},
read_string", (PyCFunction) MMapIndexInput read string, METH NOARGS, NULL},

NULL} /* sentinel */

PyTypeObject MMapIndexInputType = {

PyObject HEAD INIT (NULL)

0,
"l

si

~ ~ ~ ~ ~ Q. ~

O O O O O O O O O O O O O O ~ O

Py
MM
0,
0,
0,
0,
0,
0

’

MM

/* ob _size */
ucille. store.MMapIndexInput",/* tp name */
zeof (MMapIndexInput) , /* tp basicsize */

/* tp itemsize */
estructor) MMapIndexInput dealloc, /* tp dealloc */

/* tp print */

/* tp getattr */

/* tp setattr */

/* tp compare */

/* tp repr */

/* tp_as_number */

/* tp as_sequence */

/* tp as_mapping */

/* tp hash */

/* tp call */

/* tp str */

/* tp getattro */

/* tp setattro */

/* tp _as_ buffer */
_ TPFLAGS_DEFAULT | Py TPFLAGS BASETYPE, /* tp flags */
apIndexInput_doc, /* tp doc */

/* tp traverse */

/* tp clear */

/* tp richcompare */

/* tp weaklistoffset */

/* tp iter */

/* tp iternext */
apIndexInput methods, /* tp methods */

48

680

690

700

710

720

MMapIndexInput members, /* tp members */

/* tp getset */

/* tp base */

/* tp dict */

/* tp descr get */
/* tp descr set */
/* tp dictoffset */
initproc) MMapIndexInput init, /* tp init */
/* tp alloc */
MMapIndexInput new, /* tp new */

O ~ O O O O O o

static PyMethodDef store methods[] = ({

}i

{NULL} /* sentinel */

PyMODINIT FUNC init_ store(void) ({

/* fetch ints */

if (! (zero = PyInt FromLong(0)))
goto error;

if (! (four = PyInt FromLong(4)))
goto error;

if (! (eight = PyInt FromLong(8)))

goto error;

/* create strings */

if (! (str read byte = PyString FromString("read byte")))
goto error;

if (! (str_read bytes = PyString FromString("read bytes")))

goto error;

/* import threading */

PyObject *threading module name = NULL;

if (! (threading module name = PyString FromString("threading")))
goto error;

if (! (threading module = PyImport Import (threading module name)))
goto error;

Py DECREF (threading module name) ;

threading module name = NULL;
/* import mmap */

PyObject *mmap module name = NULL;

if (! (mmap module name = PyString FromString ("mmap")))

49

goto error;

if (! (mmap module = PyImport Import (mmap module name)))
goto error;

Py DECREF (mmap_module name) ;

mmap module name = NULL;

730 /* initialise this module */
PyObject *m;

BaseIndexInputType.tp new = PyType GenericNew;

if (PyType Ready (&BaseIndexInputType) < 0)
goto error;

MMapIndexInputType.tp new = PyType GenericNew;

if (PyType Ready (&MMapIndexInputType) < 0)

goto error;

740 m = Py InitModule3("lucille. store", _store methods,

"Provides native implementations of some classes in lucille.store.");

Py INCREF (&BaseIndexInputType) ;

PyModule AddObject (m, "BaseIndexInput", (PyObject *)&BaseIndexInputType) ;
Py INCREF (&MMapIndexInputType) ;

PyModule AddObject (m, "MMapIndexInput", (PyObject *)&MMapIndexInputType) ;
return;

750 error:
Py XDECREF (str read byte) ;

Py XDECREF (str read bytes) ;

Py XDECREF (eight) ;

Py XDECREF (four) ;

Py XDECREF (zero) ;

Py XDECREF (mmap module) ;

Py XDECREF (mmap module name) ;

Py XDECREF (threading module) ;

Py XDECREF (threading module name) ;

760 return;

Patch of changes to store. py to accomodate the store extension module

--- store.py (revision 67)

+++ store.py (revision 100)

50

19

29

39

@@ -22,6 +22,8 @@
import threading

from StringIO import StringIO

+from lucille. store import BaseIndexInput, MMapIndexInput
+
TODO locking

"nr Tucene Directory protocol <http://svn.apache.org/viewvc/lucene/java/tags/
lucene 2 1 0/src/java/org/apache/lucene/store/Directory.javas>
@@ -74,31 +76,33 @@

def open input (self, name):

fullname = os.path.join(self.path, name)

return IndexInput (fullname, os.path.getsize(fullname))
try:
return MMapIndexInput (open(fullname, 'rb'), os.path.getsize (fullname))

except (EnvironmentError, OSError, IOError):

+ o+ o+ o+

return IndexInput (fullname, os.path.getsize (fullname))

-class IndexInput (object) :
+class IndexInput (BaseIndexInput) :
"nn <http://svn.apache.org/viewve/lucene/java/tags/lucene 2 1 0/src/java/org/

apache/lucene/store/IndexInput.javas>

filepos_lock should be acquired by callers around blocks which expect the

file position to remain consistent. """

- __slots ("filename', 'file', 'length', 'filepos lock')

+ __slots = ('filename', 'file', 'length',6 'offset')

- def init (self, filename, length):

+ def init (self, filename, length, **kwargs):
+ super (IndexInput, self). init ()
self.filename = filename

self.length = length

self.file = open(self.filename, 'rb')
- self.filepos lock = threading.RLock ()
- self.seek(0) # for subclasses
+ self.offset = 0

- def len (self): return self.length

51

49

59

69

79

89

def seek(self, pos):
- self.file.seek (pos)

+ if pos > self.length: raise EOFError ()
+ self.file.seek(self.offset + pos)
def tell (self):
- return self.file.tell()
+ return self.file.tell() - self.offset

def clone(self):

"mn Returns a new IndexInput which reads from the same file as this
@@ -106,70 +110,12 @@

copied from this one. """

p = self.tell()

cl = self. class (self.filename, self.length)
+ cl.offset = self.offset

cl.seek(p)

return cl

def read byte(self):
- # XXX could use mmap instead?

return ord(self.file.read (1))

def read bytes(self, n):

return self.file.read(n)

- def read_int (self):

- n = (self.read byte() << 24 | self.read byte() << 16 |
- self.read byte() << 8 | self.read byte())

- if n > Oxefffffff:

- return n - Oxffffffff - 1

- else:

- return n

- def read long(self):

- return (self.read int() << 32 |

- self.read byte() << 24 | self.read byte() << 16 |
- self.read byte() << 8 | self.read byte())

- def read vint (self):

- """ Tucene also defines #readVLong(), but read vint can be used for
- bOth . nnn

- val = 0

- shift = 0

52

99

109

119

129

while True:
b = self.read byte()
val += (b & 127) << shift
shift += 7
if not (b & 128):

return val

def read chars(self, n):
"mm Reads n characters from the underlying file and returns them as a

unicode object.

Lucene uses Java's "modified UTF-8": <http://java.sun.com/j2se/1.5.0/docs/
api/java/io/Datalnput.html#modified-utf-8>. """
buff = StringIO()
while n > 0:
b = self.read byte()
if (b & 0x80) ==
buff.write (unichr(b & 0x7F))

elif (b & 0xEQ) != 0xEO:
buff.write (unichr (((b & 0x1F) << 6) | (self.read byte() & O0x3F)))
else:
buff.write(unichr (((b & 0x0F) << 12) | ((self.read byte() & O0x3F)
<< 6) | (self.read byte() & 0x3F)))
n-=1

return buff.getvalue ()

def skip chars(self, n):
"mwn Like read chars, but throws away the bytes. """
while n > 0:
b = self.read byte()
if (b & 0x80) == 0:
pass
elif (b & 0xE0) != OxEO:
self.read byte()
else:
self.read byte()
self.read byte()

n-=1
def read string(self):

length = self.read_vint ()
return self.read chars(length)

53

11

21

31

A.2 analysis. standard extension module

__standardmodule. re: C source file (before preprocessing with RE2C) implementing

standard tokenizer

/* Copyright 2007 Dan Callaghan <djcedjc.id.au> */

/*
* This file is part of Lucille, based on Apache Lucene

* <http://lucene.apache.org>.

* Lucille is free software; you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation; either version 3 of the License, or (at your option) any later

* version.

* Lucille is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more

* details.

* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.

*/

#include <Python.h>
#include "structmember.h"

static PyObject *alphanum type = NULL;
static PyObject *apostrophe type = NULL;
static PyObject *acronym type = NULL;
static PyObject *company type = NULL;
static PyObject *email type = NULL;
static PyObject *host type = NULL;
static PyObject *num type = NULL;

static PyObject *cj type = NULL;

static PyObject *analysis module = NULL;

#define StandardTokenizer doc "<http://svn.apache.org/viewvc/lucene/java/tags/

lucene 2 1 0/src/java/org/apache/lucene/analysis/standard/StandardTokenizer.jj>

n

54

41

51

61

71

81

typedef struct {
PyObject_ HEAD
PyUnicodeObject *input;
Py UNICODE *cursor;
Py UNICODE *1limit;

} StandardTokenizer;

static PyMemberDef StandardTokenizer members[] = {
/*{"input", T OBJECT EX, offsetof (StandardTokenizer, input), RO,
"input unicode"}, */
{NULL} /* sentinel */

Vi

static PyObject *StandardTokenizer new (PyTypeObject *type, PyObject *args,
PyObject *kwargs)

StandardTokenizer *gelf;

if ((self = (StandardTokenizer *)type->tp alloc(type, 0)) == NULL)
goto error;

self->input = NULL;

self->cursor = NULL;

self->1imit = NULL;

return (PyObject *)self;

error:

return NULL;

static int StandardTokenizer init (StandardTokenizer *self, PyObject *args,
PyObject *kwargs) (
PyUnicodeObject *input;

static char *kwlist[] = {"input", NULL};

/* XXX should coerce to unicode? or at least accept str ... */

if (!PyArg ParseTupleAndKeywords (args, kwargs, "U", kwlist,
&input))

goto error;
Py INCREF (input) ;
Py XDECREF (self->input) ;

self->input = input;

self->cursor = PyUnicode AS UNICODE (self->input) ;

55

91

101

111

121

/* XXX NOT We position self->limit one *beyond* the end of the string, because
* Python always keeps a NUL terminator at the end of the buffer and the
* re2c-generated code relies on this to detect the end of the buffer. */

self->limit = self->cursor + PyUnicode GET SIZE (self->input);
return O;

error:

return -1;

static void StandardTokenizer dealloc (StandardTokenizer *self) {
Py XDECREF (self->input) ;
self->ob type->tp free((PyObject *)self);

static PyObject *StandardTokenizer iter (StandardTokenizer *self)
Py INCREF (self) ;
return (PyObject *)self; /* per iterator proto */

static PyObject *StandardTokenizer iternext (StandardTokenizer *self)
if (self-s>cursor < self->limit) {
#define END TOKEN(_ type) type = _type; break;

Py UNICODE *cursor = self->cursor;
Py UNICODE *marker NULL;
PyObject *type = NULL;
for (;;) {
/*lre2c
re2c:define:YYCTYPE = Py UNICODE;

re2c:define:YYCURSOR = cursor;
re2c:define:YYMARKER = marker;
re2c:yyfill:enable = 0;
re2c:indent:top = 2;

LETTER = [\u0041-\u005a\u0061-\u007a\u00c0-\u00dé6\u00d8-\u00£f6\u00£8-\u00fr)\
u0100-\ulfff\uffao-\uffdc];

DIGIT = [\u0030-\u0039\u0660-\u0669\u06f0-\u06£9\u0966-\u096r\ud9e6-\uod9er)\
ula66-\uoda6f\ulae6-\ubaef\uob66-\udb6f\udbe7-\uodbef\udc66-\udc6f\udce6-\
uOcef\uodé66-\uod6f\uoe50-\uoe59\uldedo-\uded9\ui040-\ulo049] ;

56

KOREAN = [\uac00-\ud7af\ull00-\ullff];

ALPHA = LETTER+;

P=1[-_/.,1;

HAS DIGIT = (LETTER |DIGIT) *DIGIT (LETTER |DIGIT) *,

ALPHANUM = (LETTER|DIGIT|KOREAN)+;

APOSTROPHE = ALPHA ("'" ALPHA) +;
ACRONYM = ALPHA "." (ALPHA ".")+;
131 COMPANY = ALPHA [&@] ALPHA;

EMAIL = ALPHANUM ([-._] ALPHANUM)* "@" ALPHANUM ([-.] ALPHANUM)+;
HOST = ALPHANUM ("." ALPHANUM) +;
NUM = (ALPHANUM P HAS DIGIT
| HAS DIGIT P ALPHANUM
| ALPHANUM (P HAS DIGIT P ALPHANUM) +
| HAS DIGIT (P ALPHANUM P HAS DIGIT)+
| ALPHANUM P HAS DIGIT (P ALPHANUM P HAS DIGIT)+
| HAS DIGIT P ALPHANUM (P HAS DIGIT P ALPHANUM) +
);
141 CJ = [\u3040-\u318£\u3100-\u312f\u3040-\u309F\u30A0-\u30FF\u31F0-\u31FF\u3300-\
u337£f\u3400-\u4dbf\u4e00-\u9fff\ur900-\ufaff\uff65-\uffof]j;

ALPHANUM { END TOKEN (alphanum type); }
APOSTROPHE { END TOKEN (apostrophe type); }
ACRONYM { END_TOKEN (acronym_ type); }
COMPANY { END TOKEN (company type); }
EMAIL { END TOKEN (email type); }
HOST { END TOKEN (host_type); }
NUM { END TOKEN (num type); }
cJg { END TOKEN(cj type); }
151 [*1 {
// discard everything else
self->cursor = cursor;
if (self->cursor < self->1imit)
continue;
else
return NULL; // exhausted

*/

161
/* create and return a new Token */
PyObject *token = NULL;
PyObject *u = PyUnicode FromUnicode (self->cursor,

cursor - self->cursor) ;

57

if (u) |

token = PyObject CallMethod(analysis module, "Token", "OnnO",
u,
(Py ssize t) (self->cursor -
PyUnicode AS UNICODE (self->input)),
171 (Py ssize t) (cursor - PyUnicode AS UNICODE (self->input)),
type) ;

Py DECREF (u); /* "O" above increfs */
self->cursor = cursor;
return token;
} else {
return NULL; /* exhausted */

181
static PyMethodDef StandardTokenizer methods[] = {
{NULL} /* sentinel */

Vi

static PyTypeObject StandardTokenizerType = {
PyObj ect HEAD INIT (NULL)
0, /* ob_size */
"lucille.analysis. standard.standard tokenizer", /* tp name */
sizeof (StandardTokenizer), /* tp basicsize */

191 /* tp itemsize */

Q. -~

estructor) StandardTokenizer dealloc, /* tp dealloc */
/* tp print */
/* tp getattr */
/* tp setattr */

/* tp compare */

/* tp repr */

/* tp_as_ number */
/* tp as_sequence */
/* tp as _mapping */
/* tp hash */

/* tp call */

/* tp str */

/* tp getattro */
/* tp setattro */
/* tp_as_buffer */
Py TPFLAGS DEFAULT | Py TPFLAGS BASETYPE | Py TPFLAGS HAVE ITER, /* tp flags */
StandardTokenizer doc, /* tp doc */

201

O O O O O O O O O O O O O O —~ O

0, /* tp traverse */

58

0, /* tp clear */

211 0, /* tp richcompare */
0, /* tp weaklistoffset */
(getiterfunc) StandardTokenizer iter, /* tp iter */
(iternextfunc) StandardTokenizer iternext, /* tp iternext */
StandardTokenizer methods, /* tp methods */

StandardTokenizer members, /* tp members */

0, /* tp getset */
0, /* tp base */
0, /* tp dict */
0, /* tp descr get */
221 0, /* tp descr set */
0, /* tp dictoffset */
(initproc) StandardTokenizer init, /* tp init */
0, /* tp _alloc */
StandardTokenizer new, /* tp new */
Vi
static PyMethodDef standard methods[] = {
{NULL} /* sentinel */
Vi
231
PyMODINIT FUNC init standard(void) {
PyObject *analysis module name = NULL;
/* create strings */
if (! (alphanum_ type = PyString FromString ("ALPHANUM")))
goto error;
if (! (apostrophe type = PyString FromString ("APOSTROPHE")))
goto error;
if (! (acronym type = PyString FromString ("ACRONYM")))
241 goto error;
if (! (company type = PyString FromString ("COMPANY")))
goto error;
if (! (email type = PyString FromString ("EMAIL")))
goto error;
if (! (host_type = PyString FromString ("HOST")))
goto error;
if (! (num_type = PyString FromString ("NUM")))
goto error;
if (!(cj_type = PyString FromString("CJ")))
251 goto error;

/* import lucille.analysis */

59

261

271

281

if (! (analysis module name = PyString FromString("lucille.analysis")))
goto error;

if (! (analysis_module = PyImport Import (analysis module name)))
goto error;

Py DECREF (analysis module name) ;

analysis module name = NULL;

/* initialise this module */
PyObject *m;

StandardTokenizerType.tp new = PyType GenericNew;
if (PyType Ready (&StandardTokenizerType) < 0)
goto error;

m = Py InitModule("lucille.analysis. standard", standard methods) ;

Py INCREF (&StandardTokenizerType) ;

PyModule AddObject (m, "standard tokenizer", (PyObject *)&StandardTokenizerType)

H
return;

error:
Py XDECREF (alphanum type) ;
Py XDECREF (apostrophe type) ;
Py XDECREF (acronym type) ;
Py XDECREF (company type) ;
Py XDECREF (email type) ;
Py XDECREF (host type) ;
Py XDECREF (num_type) ;
Py XDECREF (cj_type) ;
Py XDECREF (analysis_module) ;
Py XDECREF (analysis module name) ;

return;

A.3 CLucene search module

IndexReader . h: header file for stub IndexReader class

* Copyright (C) 2003-2006 Ben van Klinken and the CLucene Team

*

* Distributable under the terms of either the Apache License (Version 2.0) or
* the GNU Lesser General Public License, as specified in the COPYING file.

60

13

23

33

43

#ifndef _lucene_index_IndexReader_

#define lucene index IndexReader

#if defined(LUCENE PRAGMA ONCE)
pragma once
#endif

#include <boost/python.hpp>

//#include "CLucene/store/Directory.h"
//#include "CLucene/store/FSDirectory.h"
//#include "CLucene/store/Lock.h"
//#include "CLucene/document/Document.h"
//#include "CLucene/index/TermVector.h"
//#include "SegmentInfos.h"

#include "Terms.h"

CL_NS_DEF (index)

/** IndexReader 1s an abstract class, providing an interface for accessing an
index. Search of an index is done entirely through this abstract interface,

so that any subclass which implements it is searchable.

<p> Concrete subclasses of IndexReader are usually constructed with a call to

one of the static <codesopen()</code> methods, e.g. {@link #open (String) }.

<p> For efficiency, in this API documents are often referred to via
<i>document numbers</i>, non-negative integers which each name a unique
document in the index. These document numbers are ephemeral--they may change
as documents are added to and deleted from an index. Clients should thus not

rely on a given document having the same number between sessions.

<p> An IndexReader can be opened on a directory for which an IndexWriter is

opened already, but it cannot be used to delete documents from the index then.

*/
class IndexReader :LUCENE BASE({
private:
boost: :python::object real; // underlying object from Python
public:

61

IndexReader (boost: :python::object real);

//Callback for classes that need to know if IndexReader is closing.
typedef void (*CloseCallback) (IndexReader*, wvoid*) ;

class CloseCallbackCompare:public CL_NS(util) ::Compare:: base({
public:
bool operator() (CloseCallback tl, CloseCallback t2) const(
return tl > t2;

}

static void doDelete (CloseCallback dummy) {

}

#if 0

enum FieldOption {
// all fields
ALL = 1,
// all indexed fields
INDEXED = 2,
// all fields which are not indexed
UNINDEXED = 4,
// all fields which are indexed with termvectors enables
INDEXED WITH TERMVECTOR = 8,
// all fields which are indexed but don't have termvectors enabled
INDEXED NO_TERMVECTOR = 16,
// all fields where termvectors are enabled. Please note that only standard
termvector fields are returned
TERMVECTOR = 32,
// all field with termvectors wiht positions enabled
TERMVECTOR_WITH POSITION = 64,
// all fields where termvectors with offset position are set
TERMVECTOR WITH OFFSET = 128,
// all fields where termvectors with offset and position values set
TERMVECTOR _WITH POSITION OFFSET = 256

}i
#endif
private:
#if O

CL_NS(store) : :LuceneLock* writeLock;

bool directoryOwner;

62

93 bool stale;
bool hasChanges;
bool closeDirectory;

SegmentInfos* segmentInfos;

CL_NS(store) : :Directory* directory;
#endif
typedef CL NS (util) ::CLSet<CloseCallback, wvoid*,
CloseCallbackCompare,
103 CloseCallbackCompare> CloseCallbackMap;
CloseCallbackMap closeCallbacks;

#if 0
/** Internal use. Implements commit */
virtual void doCommit () = O0;
/**

* Tries to acquire the WriteLock on this directory.
* this method is only valid if this IndexReader is directory owner.
113 *
* @throws IOException If WriteLock cannot be acquired.
*/
void aquireWriteLock () ;
protected:
/**
* Constructor used if IndexReader 1is not owner of its directory.
* This is used for IndexReaders that are used within other IndexReaders that
take care or locking directories.
*
* @param directory Directory where IndexReader files reside.
123 */
IndexReader (CL_NS(store) : :Directory* dir) ;

/**
* Constructor used if IndexReader is owner of its directory.
* If IndexReader is owner of its directory, it locks its directory in case of
write operations.
*
* @param directory Directory where IndexReader files reside.
* @param segmentInfos Used for write-1
* @param closeDirectory
133 */
IndexReader (CL_NS(store) : :Directory* directory, SegmentInfos* segmentInfos,

63

bool closeDirectory) ;

/// Implements close.

virtual void doClose() = 0;

/** Implements setNorm in subclass.*/
virtual void doSetNorm(int32_t doc, comst TCHAR* field, uint8_t wvalue) = 0;

143 /** Implements actual undeleteAll () in subclass. */
virtual void doUndeleteAll () = 0;
/** Implements deletion of the document numbered <code>docNum</codes.
* Applications should call {@link #deleteDocument (int32 t)} or {@elink #
deleteDocuments (Term*) } .
*/
virtual void doDelete(const int32 t docNum) = 0;
#endif
153 public:
#if O
DEFINE MUTEX (THIS_ LOCK)
///Do not access this directly, only public so that MultiReader can access it
virtual void commit () ;
/** Undeletes all documents currently marked as deleted in this index.*/
163 void undeleteAll () ;
/* *
* Get a list of unique field names that exist in this index and have the
specified
* field option information.
* @param fldOption specifies which field option should be available for the
returned fields
* @return Collection of Strings indicating the names of the fields.
* @see IndexReader.FieldOption
*/
virtual void getFieldNames (FieldOption fldOption, CL_NS(util)::
StringArrayWithDeletor& retarray) = 0;
173

64

183

193

203

213

_CL_DEPRECATED(getFieldNames (FieldOption, StringArrayWithDeletor&)) wvirtual
TCHAR** getFieldNames () ;

_CL_DEPRECATED(getFieldNames (FieldOption, StringArrayWithDeletor&)) virtual
TCHAR** getFieldNames (bool indexed) ;

#endif

#if

/** Returns the byte-encoded normalization factor for the named field of
* every document. This is used by the search code to score documents.

*

* The number of bytes returned is the size of the IndexReader->maxDoc ()

* MEMORY: The values are cached, so don't delete the returned byte array.
* @see Field#tsetBoost (float_ t)

*/

const uint8 t* norms(const TCHAR* field);

0

/** Reads the byte-encoded normalization factor for the named field of every
* document. This is used by the search code to score documents.

*

* @see Field#setBoost (float t)

*/

virtual void norms (const TCHAR* field, uint8 t* bytes) = 0;

/** Expert: Resets the normalization factor for the named field of the named
* document.

*

* @see #norms (TCHAR*)

* @see Similarity#decodeNorm(uint8 t)

*/

void setNorm(int32 t doc, const TCHAR* field, float t wvalue);

/** Expert: Resets the normalization factor for the named field of the named
* document. The norm represents the product of the field's {@link

* Field#setBoost (float t) boost} and its {@link Similarity#lengthNorm (TCHAR*,
* int32 t) length normalization}. Thus, to preserve the length normalization
* values when resetting this, one should base the new value upon the old.

*

* @see #norms (TCHAR*)

* @see Similarity#decodeNorm(uint8 t)

*/

void setNorm(int32 t doc, const TCHAR* field, uint8_t value);

/// Release the write lock, 1f needed.

virtual ~IndexReader () ;

65

/// Returns an IndexReader reading the index in an FSDirectory in the named
path.

static IndexReader* open(const char* path) ;

/// Returns an IndexReader reading the index in the given Directory.
static IndexReader* open(CL NS(store)::Directory* directory, bool

closeDirectory=false) ;

223 /* *
* Returns the time the index in the named directory was last modified.
* Do not use this to check whether the reader is still up-to-date, use
* {@link #isCurrent ()} instead.
*/

static uint64 t lastModified(const char* directory);

/**

* Returns the time the index in the named directory was last modified.

* Do not use this to check whether the reader is still up-to-date, use
233 * {@link #isCurrent ()} instead.

*/

static uint64 t lastModified(const CL NS (store)::Directory* directory);

/**

* Reads version number from segments files. The version number is

* initialized with a timestamp and then increased by one for each change of
* the index.

243 * @param directory where the index resides.
* @return version number.
* @throws IOException if segments file cannot be read
*/

static int64 t getCurrentVersion (CL NS (store)::Directory* directory) ;

/**
* Reads version number from segments files. The version number is
* initialized with a timestamp and then increased by one for each change of
* the index.
253 *
* @param directory where the index resides.
* @return version number.
* @throws IOException if segments file cannot be read

*/

66

static int64 t getCurrentVersion(const char* directory) ;

/**
* Version number when this IndexReader was opened.
*/

263 int64 t getVersion() ;

/**

* Check whether this IndexReader still works on a current version of the index.
* If this is not the case you will need to re-open the IndexReader to

* make sure you see the latest changes made to the index.

*

* @throws IOException

*/

bool isCurrent () ;

273
/**
* Return an array of term frequency vectors for the specified document.
* The array contains a vector for each vectorized field in the document.
* Each vector contains terms and frequencies for all terms in a given
vectorized field.
* If no such fields existed, the method returns null. The term vectors that
are
* returned my either be of type TermFreqgVector or of type TermPositionsVector
if
* positions or offsets have been stored.
*
283 * @param docNumber document for which term frequency vectors are returned
* @return array of term frequency vectors. May be null if no term vectors have
been
* stored for the specified document.
* @throws IOException if index cannot be accessed
* @see org.apache.lucene.document.Field.TermVector
*/
virtual bool getTermFregVectors (int32 t docNumber, Array<TermFregVector*s>&
result) =0;
/**
* Return a term frequency vector for the specified document and field. The
293 * returned vector contains terms and frequencies for the terms in

* the specified field of this document, if the field had the storeTermVector
* flag set. If termvectors had been stored with positions or offsets, a

* TermPositionsVector is returned.

67

* @param docNumber document for which the term frequency vector is returned

* @param field field for which the term frequency vector is returned.

* @return term frequency vector May be null if field does not exist in the
specified

* document or term vector was not stored.

* @throws IOException if index cannot be accessed

303 * @see org.apache.lucene.document.Field.TermVector
*/
virtual TermFregVector* getTermFregVector (int32 t docNumber, const TCHAR* field
) = 0;
/**

* Returns <codestrue</code> if an index exists at the specified directory.

* If the directory does not exist or if there is no index in it.

* @param directory the directory to check for an index

* @return <codestrue</code> if an index exists; <code>false</code> otherwise
*/

313 static bool indexExists (const char* directory) ;

/**

* Returns <codes>true</code> if an index exists at the specified directory.

* If the directory does not exist or if there is no index in it.

* @param directory the directory to check for an index

* @return <code>true</code> if an index exists; <code>false</code> otherwise
* @throws IOException if there is a problem with accessing the index

*/

static bool indexExists(const CL NS(store)::Directory* directory);

323
/** Returns the number of documents in this index. */
virtual int32 t numDocs() = 0;
#endif
/** Returns one greater than the largest possible document number.
* This may be used to, e.g., determine how big to allocate an array which
* will have an element for every document number in an index.
*/
int32 t maxDoc () const;
333

boost: :python: :object document (int32 t n);
#if 0O

/** Gets the stored fields of the <codes>n</code>th

* <code>Document</code> in this index.

68

* The fields are not cleared before retrieving the document, so the

* object should be new or just cleared.

*/

virtual bool document (int32 t n, CL NS(document) ::Document*) =0;
343

_CL_DEPRECATED(document (i, document)) CL_ NS (document) ::Document* document (

const int32 t n);

/** Returns true 1f document <isn</i> has been deleted */

virtual bool isDeleted(const int32 t n) = 0;

/** Returns true 1if any documents have been deleted */

virtual bool hasDeletions () const = 0;

/** Returns true 1f there are norms stored for this field. */
353 virtual bool hasNorms (const TCHAR* field) ;

#endif

/** Returns an enumeration of all the terms in the index.

* The enumeration is ordered by Term.compareTo(). Each term

* is greater than all that precede it in the enumeration.

* @memory Caller must clean up

*/

TermEnum* terms () const;
363 /** Returns an enumeration of all terms after a given term.

* The enumeration is ordered by Term.compareTo (). Each term

* is greater than all that precede it in the enumeration.

* @memory Caller must clean up

*/

TermEnum* terms (const Term* t) const;

/** Returns the number of documents containing the term <code>t</code>. */

int32 t docFreg(const Term* t) const;
373 #if O

/* Returns an unpositioned TermPositions enumerator.
* @memory Caller must clean up
*/

virtual TermPositions* termPositions () const = 0;
/** Returns an enumeration of all the documents which contain

* <codes>term</code>. For each document, in addition to the document number

* and frequency of the term in that document, a list of all of the ordinal

69

393

403

413

423

#if

*

positions of the term in the document is available. Thus, this method

implements the mapping:

<p>

Term => <docNum, freq,
<pos_{1l}, pos₂,

pos_{freqg-1l}>

> ; [*]

<p> This positional information faciliates phrase and proximity searching.
<p>The enumeration is ordered by document number. Each document number is

greater than all that precede it in the enumeration.

* @memory Caller must clean up

*/
TermPositions* termPositions (Term* term) const;
#endif

/** Returns an unpositioned {@link TermDocs} enumerator.

* @memory Caller must clean up

*/

TermDocs* termDocs () const;

/** Returns an enumeration of all the documents which contain

*

*

*

*

*

*

<code>term</code>. For each document, the document number, the frequency of

the term in that document is also provided, for use in search scoring.

Thus, this method implements the mapping:

<p>Term => <docNum, freg><sup>*</sup
>

<p>The enumeration is ordered by document number. Each document number

is greater than all that precede it in the enumeration.

* @memory Caller must clean up
*/

TermDocs* termDocs (const Term* term) const;

0

/** Deletes the document numbered <codes>docNum</code>. Once a document is

*

*

*

*

*

deleted it will not appear in TermDocs or TermPostitions enumerations.
Attempts to read its field with the {@link #document}

method will result in an error. The presence of this document may still be
reflected in the {@link #docFreq} statistic, though

this will be corrected eventually as the index is further modified.

*/

void deleteDocument (const int32 t docNum) ;

70

433

443

453

463

///@deprecated. Use deleteDocument instead.
_CL_DEPRECATED (deleteDocument) void deleteDoc (const int32 t docNum) {
deleteDocument (docNum) ; }

/** Deletes all documents containing <codes>term</codes.

* This is useful if one uses a document field to hold a unique ID string for

* the document. Then to delete such a document, one merely constructs a

* term with the appropriate field and the unique ID string as its text and

* passes it to this method.

* See {@link #deleteDocument (int)} for information about when this deletion
will

* become effective.

* @return the number of documents deleted

*/

int32 t deleteDocuments (Term* term) ;

///@deprecated. Use deleteDocuments instead.
_CL_DEPRECATED(deleteDocuments) int32 t deleteTerm(Term* term){ return

deleteDocuments (term); }
#endif
/**
* Closes files associated with this index and also saves any new deletions to
disk.
* No other methods should be called after this has been called.
*/

#if

void close() ;

0
///Checks if the index in the named directory is currently locked.

static bool isLocked(CL NS(store)::Directory* directory) ;

///Checks if the index in the named directory is currently locked.

static bool isLocked(const char* directory) ;

///Forcibly unlocks the index in the named directory.
///Caution: this should only be used by failure recovery code,
///when it is known that no other process nor thread is in fact
///currently accessing this index.

static void unlock (CL NS(store) ::Directory* directory);

static void unlock (const char* path) ;

/** Returns the directory this index resides in. */

71

CL_NS(store) : :Directory* getDirectory() { return directory; }

/** Returns true if the file is a lucene filename (based on extension or

filename) */
static bool isLuceneFile (const char* filename) ;

#endif
/**
* For classes that need to know when the IndexReader closes (such as caches,
etc),
473 * should pass their callback function to this.

*/
void addCloseCallback (CloseCallback callback, void* parameter) ;

#if O
protected:
class LockWith:public CL_NS(store) ::LuceneLockWith<IndexReader*>{
public:
CL_NS(store) : :Directory* directory;

IndexReader* indexReader;

483
//Constructor
LockWith (CL_NS(store) : :LuceneLock* lock, CL NS(store)::Directory* dir);
//Reads the segmentinfo file and depending on the number of segments found
//it returns a MultiReader or a SegmentReader
IndexReader* doBody () ;
}i
friend class IndexReader::LockWith;
493
class CommitLockWith:publie CL_NS(store) ::LuceneLockWith<void>{
private:
IndexReader* reader;
public:
//Constructor
CommitLockWith(CL NS (store) ::LuceneLock* lock, IndexReader* r);
void doBody () ;
}i
503 friend class IndexReader::CommitLockWith;

#endif

Vi

72

10

20

30

CL_NS_END
#endif

IndexReader . cpp: C++ source file implementing stub IndexReader class

#include "CLucene/StdHeader.h"

#include "IndexReader.h"
CL NS DEF (index)

IndexReader: : IndexReader (boost: :python: :object real)

_real(real)

const uint8 t *IndexReader::norms(const TCHAR *field) ({
return (const uint8 t *)PyString AsString(real.attr("norms") (wstring(field)) .
ptr());

int32 t IndexReader::maxDoc () const {

return boost::python::extract<int32 t>(real.attr("max doc") ());

TermEnum *IndexReader::terms() const {

return CLNEW TermEnum(_real.attr("terms") ());

TermEnum* IndexReader::terms (const Term *t) const {
TermEnum *te = terms () ;
te->skipTo(t) ;

return te;

boost: :python: :object IndexReader::document (int32 t n) ({

return real.attr("document") (n);

int32 t IndexReader::docFreqg(const Term *t) const {
return boost::python::extract<int32 t>(real.attr("doc freq") (t->asPythonTerm()

)) i

TermDocs *IndexReader::termDocs () const {

return _CLNEW TermDocs (_real.attr("term docs") ());

73

40

50

11

21

TermDocs *IndexReader::termDocs (const Term *t) comnst {
TermDocs *td = termDocs() ;
td->seek (t) ;

return td;

void IndexReader::close() {
CloseCallbackMap::iterator iter = closeCallbacks.begin() ;
for (;iter!=closeCallbacks.end();iter++) {
CloseCallback callback = *iter->first;
callback (this, iter->second) ;

void IndexReader::addCloseCallback (CloseCallback callback, void* parameter) {
closeCallbacks.put (callback, parameter) ;

CL_NS_END
Term. h: header file for Texrm wrapper class

* Copyright (C) 2003-2006 Ben van Klinken and the CLucene Team

*

* Distributable under the terms of either the Apache License (Version 2.0) or
* the GNU Lesser General Public License, as specified in the COPYING file.

#ifndef lucene_index Term_

#define _lucene_index Term_

#if defined(LUCENE_ PRAGMA ONCE)
pragma once

#endif

#include <boost/python.hpp>

#include "CLucene/util/Misc.h"

#include "CLucene/util/StringIntern.h"
CL NS DEF (index)

/**

74

31

41

51

A Term represents a word from text. This is the unit of search. It is
composed of two elements, the text of the word, as a string, and the name of

the field that the text occured in, an interned string.

Note that terms may represent more than words from text fields, but also

things like dates, email addresses, urls, etc.

IMPORTANT NOTE:

Term inherits from the template class LUCENE REFBASE which tries to do

some garbage collection by counting the references an instance has. As a result
of this construction you MUST use CLDECDELETE (obj) when you want to delete an

of Term!
ABOUT intrn

intrn indicates if field and text are interned or not. Interning of Strings is the
process of

converting duplicated strings to shared ones.

*/
class Term:LUCENE REFBASE ({
private:
size t cachedHashCode;
const TCHAR* field;
//CLStringIntern: :iterator fielditr;
#ifdef LUCENE TERM TEXT LENGTH
TCHAR _text [LUCENE TERM TEXT LENGTH+1];
#else
TCHAR* _text;
size t textLenBuf; //a cache of text len, this allows for a preliminary
comparison of text lengths
//bool dupT; //Indicates if Term Text is duplicated (and therefore must
be deleted) .
#endif
size t textLen; //a cache of text len, this allows for a preliminary comparison
of text lengths
bool internF; //Indicates if Term Field is interned(and therefore must be
uninternd) .

public:

//uses the specified fieldTerm's field. this saves on intern'ing time.
Term(const Term* fieldTerm, const TCHAR* txt) ;

///Constructs a blank term

75

61

71

81

91

101

Term() ;

//todo: these need to be private, but a few other things need to be changed
first...
Term (const TCHAR* fld, const TCHAR* txt, bool internField) ;

/**

* Constructor. Constructs a Term with the given field and text. Field and text
are not copied

* Field and text are deleted in destructor only if intern is false.

*/

Term(const TCHAR* fld, const TCHAR* txt);

///Destructor.

~Term() ;

///Returns the field of this term, an interned string. The field indicates
///the part of a document which this term came from.

const TCHAR* field() comst; ///<returns reference

///Returns the text of this term. In the case of words, this is simply the
///text of the word. In the case of dates and other types, this is an
///encoding of the object as a string.

const TCHAR* text () comst; ///<returns reference

boost::python::object fieldPython() const;
boost: :python::object _textPython() const;

///Resets the field and text of a Term.
inline void set (const TCHAR* fld, const TCHAR* txt) {
set (f1d, txt, true) ;

/**

* Optimized set of Term by reusing same field as this Term

* - gvoids field.intern() overhead

* @param text The text of the new term (field is implicitly same as this Term
instance)

*/

void set (const Term* term, const TCHAR* txt) ;
void set (const TCHAR* fld, const TCHAR* txt, const bool internField) ;

void set (boost::python::object term);

76

111

121

131

141

}i

boost: :python: :tuple asPythonTerm() const;

/** Compares two terms, returning a negative integer if this
term belongs before the argument, zero if this term is equal to the

argument, and a positive integer if this term belongs after the argument.

The ordering of terms is first by field, then by text.*/

int32 t compareTo(const Term* other) const;
bool equals (const Term* other) const;
size t textLength() comnst { return textLen; }

///Forms the contents of Field and term in some kind of tuple notation
///<field:text>
TCHAR* toString() comnst;

size_t hashCode() ;

class Equals:public CL NS STD(binary function)<const Term*,const Term*, boolx>
{
public:

bool operator () (const Term* vall, const Term* val2) const{

return vall->equals(val2);

}i

class Compare:LUCENE BASE, public CL NS (util)::Compare:: base //<Term*s>
{
public:
bool operator () (Term* tl, Term* t2) const{
return (tl->compareTo(t2) < 0);
}
size t operator() (Term* t) const{

return t->hashCode() ;

i

CL_NS_END
#endif

77

15

25

35

Term. cpp: C++ source file implementing Term wrapper class

* Copyright (C) 2003-2006 Ben van Klinken and the CLucene Team

* Distributable under the terms of either the Apache License (Version 2.0) or
* the GNU Lesser General Public License, as specified in the COPYING file.

__ */
#include "CLucene/StdHeader.h"
#include "Term.h"
#include "CLucene/util/StringIntern.h"
CL_NS_USE (util)
CL_NS_DEF (index)
Term: : Term () {
//Intern fld and assign it to field
_field = LUCENE BLANK STRING;
internF = false;
cachedHashCode = 0;
textLen = 0;
//Duplicate txt and assign it to text
#ifdef LUCENE TERM TEXT LENGTH
_text [0]=0;
f#else
_text = LUCENE BLANK STRING;
textLenBuf = 0;
#endif
textLen = 0;
}
Term: : Term(const TCHAR* fld, const TCHAR* txt,const bool internField){
//Func - Constructor.
// Constructs a Term with the given field and text. Field and text are not
copied
// Field and text are deleted in destructor only if intern is false.
//Pre - fld != NULL and contains the name of the field
// txt != NULL and contains the value of the field
// internF is true or false and indicates if term Field is interned or not
// internT is true or false and indicates i1if term Text 1is interned or not
// canDelete defaults to true but can be false and indicates to the

IGarbageCollector that the Term can be deleted when finalized
//Post - An instance of Term has been created.Field and txt have not been copied
but assigned

78

45

55

65

75

_field = LUCENE BLANK STRING;

internF = false;

textLen = 0;

#ifdef LUCENE TERM TEXT LENGTH
_text[0]=0;

#telse
_text = LUCENE_BLANK STRING;
textLenBuf = 0;

#endif

set (f1d, txt, internField) ;

Term: : Term(const Term* fieldTerm, const TCHAR* txt){
_field = LUCENE BLANK STRING;
internF = false;
textLen = 0;
#ifdef LUCENE TERM TEXT LENGTH
_text[0]=0;
#else
_text = LUCENE BLANK STRING;
textLenBuf = 0;
#endif

set (fieldTerm, txt) ;

Term: :Term (const TCHAR* fld, comnst TCHAR* txt) {
_field = LUCENE_BLANK STRING;
internF = false;
textLen = 0;
#ifdef LUCENE TERM TEXT LENGTH
_text[0]=0;
#telse
_text = LUCENE BLANK STRING;
textLenBuf = 0;
#endif

set (f1d, txt) ;

Term: : ~Term () {

79

85 //Func - Destructor.
//Pre - true
//Post - The instance has been destroyed. field and text have been deleted if pre(

intrn) is false

//Unintern field
if (internF)

CLStringIntern: :unintern(_ field);
_field = NULL;

#ifndef LUCENE_TERM TEXT LENGTH
95 //Deletetext if it is the owner
if (_text != LUCENE BLANK STRING)
_CLDELETE CARRAY(_text);
#endif

}

const TCHAR* Term::field() comnst {
//Func - Returns the field of this term, an interned string. The field indicates
// the part of a document which this term came from.
//Pre - true
105 //Post - field has been returned

return field;

const TCHAR* Term::text () const {
//Func - Returns the text of this term. In the case of words, this is simply the

// text of the word. In the case of dates and other types, this is an
// encoding of the object as a string.
//Pre - true

115 //Post - text has been returned

return text;

boost: :python: :object Term:: fieldPython() const {
return boost::python: :object (wstring(field())) ;

boost: :python: :object Term:: textPython() const {
125 return boost::python: :object (wstring(text())) ;

80

void Term::set (boost: :python::object term) ({
const wstring field = boost::python::extract<wstring>(term[0]) ;
const wstring text = boost::python::extract<wstring>(_ term([1]);
set (field.c_str(), text.c_str());

boost: :python::tuple Term::asPythonTerm() const
135 return boost::python::make tuple(wstring(field), wstring(text));

void Term: :set (const Term* term, const TCHAR* txt){
set (term->field (), txt, false) ;

void Term::set (const TCHAR* fld, const TCHAR* txt,const bool internField) {
//Func - Resets the field and text of a Term.

//Pre - fld != NULL and contains the name of the field
145 // txt != NULL and contains the value of the field
// internF is true or false
// internT is true or false
//Post - field and text of Term have been reset
CND_PRECONDITION(fld != NULL, "fld contains NULL") ;
CND_PRECONDITION (txt != NULL, "txt contains NULL") ;

//save field for unintern later
const TCHAR* oldField = field;

155 //bool oldInternF = internF; //Not used
cachedHashCode = 0;

textLen = _tcslen(txt);

//Delete text if it is the owner
#ifdef LUCENE TERM TEXT LENGTH
if (textLen > LUCENE TERM TEXT LENGTH)
textLen = LUCENE_TERM TEXT_ LENGTH;
_tcsncpy (_text, txt, textLen+1) ;
165 _text [textLen] =0;

#else

//1f the term text buffer is bigger than what we have
if (_text && textLen > textLenBuf) {
if (_text != LUCENE_ BLANK STRING) {
_CLDELETE _ARRAY(_text);

81

}else
_text = NULL;
textLenBuf = 0;

175 }
if (_text==LUCENE BLANK STRING)
_text = LUCENE BLANK STRING;
else if (_text==NULL) {
if (txt[0] == 0){
//1if the string is blank and we aren't re-using the buffer...
_text = LUCENE BLANK STRING;
}else{
//duplicate the text
185 _text = stringDuplicate(txt);
textLenBuf = textLen;
}
}else{
//re-use the buffer
_tecscpy (_text, txt);
}
#endif
195 //Set Term Field
if (internField)
_field = CLStringIntern::intern(fld CL_FILELINE) ;
else

_field = fl4;

//unintern old field after interning new one,
if (internF)

CLStringIntern: :unintern(oldField) ;

internF = internField;
205
CND_PRECONDITION(tcscmp(fld, field)==0,"field not equal");
}
/** Compares two terms, returning true iff they have the same
field and text. */
bool Term::equals (const Term* other) const({
if (cachedHashCode != 0 && other->cachedHashCode != 0 &&
other->cachedHashCode != cachedHashCode)
return false;
215

82

if (field==other-> field){

//this can be quicker than using compareTo, because checks

//field length first

if (textLen == other->textLen) {

return (tcscmp(text,other-> text)==0);
}else
return false;

}else

return false;

225 }

size t Term::hashCode () {
if (cachedHashCode == 0)
cachedHashCode = Misc::thashCode(field) + Misc::thashCode(text,textLen) ;

return cachedHashCode;

int32 t Term::compareTo (const Term* other) const {
235 //Func - Compares two terms, to see if this term belongs before,is equal to or
after
// after the argument term.
//Pre - other is a reference to another term

//Post - A negative integer is returned if this term belongs before the argument,

// zero is returned if this term is equal to the argument, and a positive
integer
// if this term belongs after the argument.

//Check ret to see if text needs to be compared
if (field == other-> field){ // fields are interned
//Compare text with text of other and return the result
245 return tcscmp(text,other-> text);
}else

return tcscmp(field,other-> field);

TCHAR* Term::toString() const({

//Func - Forms the contents of Field and term in some kind of tuple notation

// <field:text>
//Pre - true
//Post - a string formatted as <field:text> is returned if pre(field) is NULL and
255 // text is NULL the returned string will be formatted as <:>
return CL NS (util) ::Misc::join(field, T(":"), _text);

83

10

20

30

CL_NS_END
Terms . h: header file for stub TermDocs and TermEnum classes

* Copyright (C) 2003-2006 Ben van Klinken and the CLucene Team

* Distributable under the terms of either the Apache License (Version 2.0) or
* the GNU Lesser General Public License, as specified in the COPYING file.

#ifndef lucene index Terms_

#define lucene_ index Terms_

#if defined(LUCENE PRAGMA ONCE)
pragma once
#endif

#include <boost/python.hpp>

#include "Term.h"
CL_NS_DEF (index)

class TermEnum; //predefine

class TermPositions;

/** TermDocs provides an interface for enumerating <document, frequency>
pairs for a term. <p> The document portion names each document containing
the term. Documents are indicated by number. The frequency portion gives
the number of times the term occurred in each document. <p> The pairs are

ordered by document number.

@see IndexReader#termDocs ()
*/
class TermDocs: LUCENE BASE {
private:

boost: :python: :object real; // underlying object from Python

public:
#if 0
virtual ~TermDocs () {

}

#endif

84

40

50

60

70

8o

// Sets this to the data for a term.
// The enumeration 1s reset to the start of the data for this term.

void seek (const Term* term) ;
TermDocs (boost : :python: :object real);

/** Sets this to the data for the current term in a {@link TermEnum}.
* This may be optimized in some implementations.
*/

void seek (const TermEnum* termEnum) ;

// Returns the current document number. <p> This is invalid until {elink
// #next()} is called for the first time.

int32 t doc() const;

// Returns the frequency of the term within the current document. <p> This
// 1s invalid until {elink #next ()} is called for the first time.
int32_t freg() const;

// Moves to the next pair in the enumeration. <p> Returns true iff there is
// such a next pair in the enumeration.

bool next () ;

// Attempts to read multiple entries from the enumeration, up to length of
// <i>docs</i>. Document numbers are stored in <isdocs</i>, and term

// frequencies are stored in <is>freqs</i>. The <i>fregs</i> array must be as
// inté4_t as the <i>docs</i> array.

//

// <p>Returns the number of entries read. Zero is only returned when the

// stream has been exhausted.

int32 t read(int32 t* docs, int32 t* fregs, int32 t length);

// Skips entries to the first beyond the current whose document number 1is

// greater than or equal to <is>target</i>. <p>Returns true iff there is such
// an entry. <p>Behaves as if written: <pre>

// bool skipTo(int32 t target) f{

// do {

// if (!next())

// return false;

// } while (target > doc());
// return true;

/7)

// </pres>

// Some implementations are considerably more efficient than that.

85

90

100

110

120

bool skipTo(const int32 t target);

// Frees associated resources.

void close() ;

#if O
/** Solve the diamond inheritence problem by providing a reinterpret function.
* No dynamic casting is required and no RTTI data is needed to do this
*/
virtual TermPositions* asTermPositions()=0;

#endif

Vi

// Abstract class for enumerating terms.
//
//<p>Term enumerations are always ordered by Term.compareTo(). Each term in
//the enumeration is greater than all that precede 1it.
class TermEnum: LUCENE BASE {
private:
boost: :python::object real; // underlying object from Python

Term *_term;
public:
TermEnum (boost : :python: :object real);

// Increments the enumeration to the next element. True if one exists.

bool next () ;

// Returns a pointer to the current Term in the enumeration.

Term* term() ;

// Returns the current Term in the enumeration.

Term* term(bool pointer) ;
boost: :python: :object pythonTerm() const;
#if O
// Returns the docFreq of the current Term in the enumeration.
virtual int32 t docFreg() const=0;

#endif

// Closes the enumeration to further activity, freeing resources.

86

void close() ;

130 #if O
virtual ~TermEnum () {

}

#endif

// Term Vector support

/** Skips terms to the first beyond the current whose value is

* greater or equal to <i>target</i>. <p>Returns true iff there is such
* an entry. <p>Behaves as if written: <pres

* public boolean skipTo(Term target) {

140 * do {
* if (!next())
* return false;
* } while (target > term());
* return true;
*)
* </pres>

* Some implementations are considerably more efficient than that.
*/
void skipTo (const Term* target) ;
150

#if O
/**
* Because we need to know how to cast the object, we need the objects name.
*/
virtual const char* getObjectName() = 0;

#endif

bi

160
#if O
/**
* TermPositions provides an interface for enumerating the <document,
* frequency, <position>* > tuples for a term. <p> The document and
* frequency are the same as for a TermDocs. The positions portion lists the
ordinal

* positions of each occurrence of a term in a document.

*

* @see IndexReader#termPositions()
*/

170 class TermPositions: public virtual TermDocs {

87

180

190

10

20

public:
// Returns next position in the current document. It is an error to call
// this more than {@link #freqg()} times
// without calling {@elink #next () }<p> This is
// invalid until {@link #next ()} is called for
// the first time.

virtual int32 t nextPosition() = 0;

virtual ~TermPositions () {

}

/** Solve the diamond inheritence problem by providing a reinterpret function.

* No dynamic casting is required and no RTTI data is needed to do this

*/
virtual TermDocs* _ asTermDocs ()=0;
virtual TermPositions* asTermPositions()=0;
Vi
#endif
CL_NS_END
#endif

TermDocs . cpp: C++ source file implementing stub TermDocs class

#include "CLucene/StdHeader.h"

#include "Terms.h"
CL_NS_DEF (index)

TermDocs: : TermDocs (boost : :python: :object real)

_real(real)

void TermDocs: :seek (const TermEnum *termEnum) {

_real.attr("seek") (termEnum->pythonTerm()) ;

void TermDocs: :seek (const Term *term) {

_real.attr("seek") (term->asPythonTerm()) ;

int32 t TermDocs::doc() const

return boost::python::extract<int32 t>(real.attr("doc"));

88

30

40

11

int32 t TermDocs::freqg() const {

return boost::python::extract<int32 t>(real.attr("freq"));

bool TermDocs: :next () {

return boost::python::extract<bool>(real.attr ("advance") ());

int32 t TermDocs::read(int32 t+* docs, int32 t* fregs, int32 t length) {
int32 t i = 0;
while (boost::python::extract<bools(real.attr("advance") ())) {
docs[i] = boost::python::extract<int32 t>(real.attr("doc"));
fregs[i] = boost::python::extract<int32 t>(real.attr("freqg"));
1 ++;
if (i >= length) break;

}

return i;

bool TermDocs::skipTo(const int32 t target) {

return boost::python::extract<bool>(real.attr("skip to") (target)) ;

void TermDocs::close() {

}

CL_NS_END

TermEnum. cpp: C++ source file implementing stub TermEnum class

#include "CLucene/StdHeader.h"
#include "Terms.h"

#include "Term.h"
CL NS DEF (index)

TermEnum: : TermEnum (boost : :python: :object real)
_real(_real), _term(CLNEW Term)

bool TermEnum::next ()
if (boost::python::extract<bools>(real.attr ("advance") ()))
_term->set(_real.attr("term"));

return true;

89

21

31

41

} else
return false;

Term *TermEnum::term() {
return CL POINTER(term) ;

Term *TermEnum: :term(bool pointer) {
if (pointer)
return CL POINTER(term);
else

return term;

boost: :python: :object TermEnum::pythonTerm() const {

return real.attr("term");

void TermEnum::close () {

}

void TermEnum::skipTo (const Term *t) {

_real.attr("scan to") (t->asPythonTerm()) ;

CL_NS_END

Patch of changes to search module to accomodate stub classes

Index: MultiSearcher.cpp

--- MultiSearcher.cpp (.../vendor/clucene-core-0.9.20/src/CLucene/search/
MultiSearcher.cpp) (revision 115)

+++ MultiSearcher.cpp (.../branches/clucene-search/src/lucille/search/CLucene/
search/MultiSearcher.cpp) (revision 115)

@@ -9,13 +9,13 @@

#include "SearchHeader.h"

#include "HitQueue.h"

-#include "CLucene/document/Document.h"
+//#include "CLucene/document/Document.h"
#include "CLucene/index/Term.h"

#include "FieldDocSortedHitQueue.h"

90

18

28

38

48

CL_NS USE (index)

CL_NS_USE (util)
-CL_NS_USE (document)
+//CL_NS_USE (document)

CL_NS DEF (search)
@@ -57,12 +57,19 e@

return docFreq;

+#if O
/** For use by {@link HitCollector} implementations. */

bool MultiSearcher::doc(int32 t n, Document* d) {

int32 t i = subSearcher(n); // find searcher index
return searchables[i] ->doc(n - starts[i], 4d); // dispatch to searcher
}
+#endif
boost: :python: :object MultiSearcher::doc(const int32 t n)
int32 t i = subSearcher (n); // find searcher index
return searchables[i] ->doc(n - starts[i]); // dispatch to searcher

+ 4+ o+ o+ o+

int32 t MultiSearcher::searcherIndex (int32 t n) const({
return subSearcher (n) ;

Index: Hits.cpp

--- Hits.cpp (.../vendor/clucene-core-0.9.20/src/CLucene/search/Hits.cpp)

revision 115)

+++ Hits.cpp (.../branches/clucene-search/src/lucille/search/CLucene/search/Hits

.cpp) (revision 115)
@@ -7,12 +7,12 @@
#include "CLucene/StdHeader.h"

#include "SearchHeader.h"

-#include "CLucene/document/Document.h"
+//#include "CLucene/document/Document.h"
#include "CLucene/index/IndexReader.h"

#include "Filter.h"
#include "CLucene/search/SearchHeader.h"

-CL_NS_USE (document)

91

+//CL_NS_USE (document)
CL_NS_USE (util)
CL_NS_USE (index)

@@ -26,7 +26,7 @@

next = NULL;
prev = NULL;
- doc = NULL;
+ doc = boost: :python: :object () ;
score = s;
id = 1i;

}

@@ -36,7 +36,6 @@
//Pre - true

//Post - The instance has been destroyed

- _ CLDELETE (doc) ;

@@ -66,6 +65,7 @@
return length;

+#if O
Document& Hits::doc (int32_t n) {
HitDoc* hitDoc = getHitDoc (n) ;

@@ -87,7 +87,13 @@

return *hitDoc->doc;

}

+#endif

boost: :python: :object Hits::doc(const int32 t n)
HitDoc* hitDoc = getHitDoc (n) ;

return searcher->doc (hitDoc->id) ;

+ 4+ 4+ o+ o+

int32 t Hits::id (comst int32 t n){
return getHitDoc (n) ->id;

}

Index: BooleanQuery.h

92

108

118

128

138

--- BooleanQuery.h (.../vendor/clucene-core-0.9.20/src/CLucene/search/BooleanQuery

.h) (revision 115)
+++ BooleanQuery.h (.../branches/clucene-search/src/lucille/search/CLucene/search/
BooleanQuery.h) (revision 115)

@@ -54,8 +54,9 e@
Weight* createWeight (Searcher* searcher) ({
return _CLNEW BooleanWeight (searcher, &clauses, this) ;
+ public:
BooleanQuery (const BooleanQuery& clone) ;

- public:

/** Constructs an empty boolean query. */

BooleanQuery () ;
@@ -114,7 +115,7 @@

Query* rewrite (CL NS (index) ::IndexReader* reader) ;
Query* clone() const;
- bool equals (Query* o) const;

+ bool equals(const Query* o) const;

/** Prints a user-readable version of this query. */
TCHAR* toString(const TCHAR* field) const;

Index: BooleanClause.h

--- BooleanClause.h (.../vendor/clucene-core-0.9.20/src/CLucene/search/
BooleanClause.h) (revision 115)

+++ BooleanClause.h (.../branches/clucene-search/src/lucille/search/CLucene/search/
BooleanClause.h) (revision 115)

@@ -31,11 +31,11 @@

// If true, documents documents which <i>do not</i>
// match this sub-query will <isnot</i> match the boolean query.
- bool required;

+ const bool required;

// If true, documents documents which <i>do</i>

// match this sub-query will <isnot</i> match the boolean query.
- bool prohibited;

+ const bool prohibited;

bool deleteQuery;

93

148

158

168

178

Index:

SearchHeader.h

--- SearchHeader.h (.../vendor/clucene-core-0.9.20/src/CLucene/search/SearchHeader
.h) (revision 115)

+++ SearchHeader.h (.../branches/clucene-search/src/lucille/search/CLucene/search/
SearchHeader.h) (revision 115)

@@ -11,10 +11,12 @@

pragma once

#tendif

+#include <boost/python.hpp>

+

#include "CLucene/index/IndexReader.h"

#include "CLucene/index/Term.h"
#include "Filter.h"

-#include "CLucene/document/Document.h"

+//#include "CLucene/document/Document.h"
#include "Sort.h"
#include "CLucene/util/VoidList.h"

#include "Explanation.h"

@@ -133,7 +135,10 @@
public:
float t score;
int32 t id;
+#if O

+#endif

+

@@ -167,

+#if O

ee -174,

CL_NS (document) : :Document* doc;

boost: :python: :object doc;

HitDoc* next; // in doubly-linked cache
HitDoc* prev; // in doubly-linked cache

6 +172,7 @@

/** Returns the total number of hits available in this set. */

int32 t length() comst;

/** Returns the stored fields of the nth document in this set.
<p>Documents are cached, so that repeated requests for the same element may
return the same Document object.

6 +180,9 @@

* @memory Memory belongs to the hits object. Don't delete the return value.
*/

CL_NS (document) : :Document& doc (const int32 t n);

94

+#endif
+

+ boost: :python::object doc(const int32 t n);

/** Returns the id for the nth document in this set. */
int32 t id (comst int32 t n);
188 @@ -248,13 +257,17 @@
*/

virtual TopDocs* _search(Query* query, Filter* filter, comst int32 t n) = 0;

+#if O
/** Expert: Returns the stored fields of document <code>i</codes.
* Called by {@link HitCollector} implementations.
* @see IndexReader#document (int32 t).
*/
virtual bool doc(int32 t i, CL_NS(document) ::Document* d) = 0;

198 _CL_DEPRECATED(doc(i, document)) CL_NS(document) ::Document* doc (const
int32 t i);
+#endif

+ virtual boost::python::object doc(const int32 t 1i);

/** Expert: called to re-write queries into primitive gqueries. */

virtual Query* rewrite (Query* query) = 0;

@@ -435,7 +448,7 @@

*/
208 virtual TCHAR* toString(const TCHAR* field) comnst = 0;
- virtual bool equals (Query* other) const = 0;
+ virtual bool equals(const Query* other) comnst = 0;

virtual size t hashCode() const = 0;

/** Prints a query to a string. */
Index: TermScorer.cpp

--- TermScorer.cpp (.../vendor/clucene-core-0.9.20/src/CLucene/search/TermScorer.
cpp) (revision 115)
218 +++ TermScorer.cpp (.../branches/clucene-search/src/lucille/search/CLucene/search/
TermScorer.cpp) (revision 115)

@@ -15,7 +15,7 @@

//TermScorer takes TermDocs and delets it when TermScorer 1is cleaned up

TermScorer: : TermScorer (Weight* w, CL NS (index) ::TermDocs* td,

95

- Similarity* similarity,uint8 t* norms) :
+ Similarity* similarity, comnst uint8 t* norms):
Scorer (similarity),
termDocs (td) ,
norms (_norms) ,
228 Index: IndexSearcher.h

--- IndexSearcher.h (.../vendor/clucene-core-0.9.20/src/CLucene/search/
IndexSearcher.h) (revision 115)

+++ IndexSearcher.h (.../branches/clucene-search/src/lucille/search/CLucene/search/
IndexSearcher.h) (revision 115)

@@ -11,9 +11,11 @@

pragma once

#endif

+#include <boost/python.hpp>
4
238 #include "SearchHeader.h"

-#include "CLucene/store/Directory.h"
-#include "CLucene/document/Document.h"
+//#include "CLucene/store/Directory.h"
+//#include "CLucene/document/Document.h"
#include "CLucene/index/IndexReader.h"
#include "CLucene/index/Term.h"
#include "CLucene/util/BitSet.h"

@@ -31,15 +33,11 @@

bool readerOwner;

248
public:
- /// Creates a searcher searching the index in the named directory.
- IndexSearcher (const char* path) ;
- /// Creates a searcher searching the index in the specified directory.
- IndexSearcher (CL_NS(store) : :Directory* directory) ;
/// Creates a searcher searching the provided index.
IndexSearcher (CL_NS (index) : :IndexReader* r);
258
+ IndexSearcher (boost: :python: :object r);
+
~IndexSearcher () ;

/// Frees resources associated with this Searcher.
@@ -47,9 +45,13 @@

96

268

278

288

298

int32_t docFreg(const CL_NS(index)::Term* term) const;

+#if 0

bool doc(int32 t i, CL_NS(document) ::Document* document) ;

_CL_DEPRECATED(doc (i, document)) CL NS (document) ::Document* doc(int32 t 1i);
+#endif

+ boost: :python::object doc(const int32 t i);

int32 t maxDoc () const;

TopDocs* search(Query* query, Filter* filter, comnst int32 t nDocs) ;
Index: FieldCacheImpl.cpp

--- FieldCacheImpl.cpp (.../vendor/clucene-core-0.9.20/src/CLucene/search/
FieldCacheImpl.cpp) (revision 115)

+++ FieldCacheImpl.cpp (.../branches/clucene-search/src/lucille/search/CLucene/
search/FieldCacheImpl.cpp) (revision 115)

@@ -5,6 +5,7 @@
* the GNU Lesser General Public License, as specified in the COPYING file.

#include "CLucene/StdHeader.h"
+#include "CLucene/util/StringIntern.h"
#include "FieldCacheImpl.h"

CL_NS USE (util)
Index: TermQuery.h

--- TermQuery.h (.../vendor/clucene-core-0.9.20/src/CLucene/search/TermQuery.h) (
revision 115)
+++ TermQuery.h (.../branches/clucene-search/src/lucille/search/CLucene/search/
TermQuery.h) (revision 115)
@@ -11,6 +11,8 @@
pragma once
#endif

+#include <boost/python.hpp>
+
#include "SearchHeader.h"
#include "Scorer.h"
#include "CLucene/index/Term.h"
@@ -55,22 +57,27 @@

97

protected:
Weight* createWeight (Searcher* searcher);
+ public:
308 TermQuery (const TermQuery& clone) ;

- public:

// Constructs a query for the term <code>t</codes.
TermQuery (CL_NS (index) : :Term* t);

~TermQuery () ;

+ TermQuery (boost: :python: :object term);

static const TCHAR* getClassName () ;
318 const TCHAR* getQueryName () const;

//added by search highlighter

CL_NS (index) : : Term* getTerm(bool pointer=true) const;

+ CL_ NS (index) : :Term* getTermPython() const;

// Prints a user-readable version of this query.
TCHAR* toString(const TCHAR* field) comst;

328 - bool equals (Query* other) const;
+ bool equals (const Query* other) const;

Query* clone() const;

/** Returns a hash code value for this object.*/

Index: BooleanQuery.cpp

--- BooleanQuery.cpp (.../vendor/clucene-core-0.9.20/src/CLucene/search/
BooleanQuery.cpp) (revision 115)
+++ BooleanQuery.cpp (.../branches/clucene-search/src/lucille/search/CLucene/
search/BooleanQuery.cpp) (revision 115)
@@ -191,7 +191,7 @@
338 1

/** Returns true iff <codeso</code> is equal to this. */
- bool BooleanQuery::equals (Query* o)const {
+ bool BooleanQuery::equals (const Query* o)const {
if (! (o->instanceOf (BooleanQuery: :getClassName ())))
return false;
const BooleanQuery* other = (BooleanQuery*)o;

Index: MultiSearcher.h

98

348

358

368

378

--- MultiSearcher.h (.../vendor/clucene-core-0.9.20/src/CLucene/search/
MultiSearcher.h) (revision 115)
+++ MultiSearcher.h (.../branches/clucene-search/src/lucille/search/CLucene/search/
MultiSearcher.h) (revision 115)
@@ -12,7 +12,7 @@
#endif

#include "SearchHeader.h"
-#include "CLucene/document/Document.h"
+//#include "CLucene/document/Document.h"

#include "CLucene/index/Term.h"

CL_NS DEF (search)
@@ -54,9 +54,13 @@

int32_t docFreg(const CL_NS(index) ::Term* term) const ;

+#if O
/** For use by {@link HitCollector} implementations. */
bool doc(int32 t n, CL_NS(document) ::Document* document) ;
+#endif
+ boost: :python: :object doc(const int32 t n);
+

/** For use by {@link HitCollector} implementations to identify the
* index of the sub-searcher that a particular hit came from. */
int32 t searcherIndex(int32 t n) const;

Index: SearchHeader.cpp

--- SearchHeader.cpp (.../vendor/clucene-core-0.9.20/src/CLucene/search/
SearchHeader . cpp) (revision 115)

+++ SearchHeader.cpp (.../branches/clucene-search/src/lucille/search/CLucene/
search/SearchHeader. cpp) (revision 115)

@@ -12,13 +12,19 @@
CL_ NS USE (index)
CL_NS_DEF (search)

+#if 0
CL_NS (document) : :Document* Searchable::doc(const int32 t 1) {
CL_NS (document) : :Document* ret = CLNEW CL NS (document) : :Document;

if (!doc(i,ret))
_CLDELETE(ret);

return ret;

99

388

398

408

418

428

}

+#endif

+boost: :python: :object Searchable::doc(const int32 t i) {

+ throw false;

+)

+

//static

Query* Query::mergeBooleanQueries (Query** queries) {
CL NS (util) ::CLVector<BooleanClause*> allClauses;

Index: IndexSearcher.cpp

--- IndexSearcher.cpp (.../vendor/clucene-core-0.9.20/src/CLucene/search/
IndexSearcher.cpp) (revision 115)

+++ IndexSearcher.cpp (.../branches/clucene-search/src/lucille/search/CLucene/
search/IndexSearcher.cpp) (revision 115)

@@ -10,8 +10,8 @@

#include "SearchHeader.h"

#include "Scorer.h"

#include "FieldDocSortedHitQueue.h"
-#include "CLucene/store/Directory.h"
-#include "CLucene/document/Document.h"
+//#include "CLucene/store/Directory.h"
+//#include "CLucene/document/Document.h"

#include "CLucene/index/IndexReader.h"

#include "CLucene/index/Term.h"

#include "CLucene/util/BitSet.h"

@@ -19,7 +19,7 @@

CL_NS_USE (index)
CL_NS_USE (util)
-CL_NS_USE (document)
+//CL_NS_USE (document)

CL_NS DEF (search)
@@ -102,30 +102,6 @@

Vi

- IndexSearcher::IndexSearcher (const char* path) {

- //Func - Constructor

- /) Creates a searcher searching the index in the named directory. */
- //Pre - path != NULL

100

- //Post - The instance has been created
- CND_PRECONDITION(path != NULL, "path is NULL") ;
- reader = IndexReader::open(path) ;

- readerOwner = true;

- IndexSearcher::IndexSearcher (CL NS (store) : :Directory* directory){

438 - //Func - Constructor
-/ Creates a searcher searching the index in the specified directory. */
- //Pre - path != NULL

- //Post - The instance has been created
- CND_PRECONDITION (directory != NULL, "directory is NULL") ;

- reader = IndexReader::open(directory) ;

- readerOwner = true;

448 -
IndexSearcher: : IndexSearcher (IndexReader* r) {
//Func - Constructor
// Creates a searcher searching the index with the provide IndexReader
@@ -136,6 +112,11 @@

readerOwner = false;

IndexSearcher: : IndexSearcher (boost: :python: :object r)
reader = CLNEW IndexReader (r) ;

458 readerOwner = true;

+ o+ o+ o+ o+

IndexSearcher: : ~IndexSearcher () {
//Func - Destructor
//Pre - true

@@ -165,6 +146,7 @@

return reader->docFreqg(term) ;

468 +#if 0
_CL_DEPRECATED(doc(i, document)) CL_NS(document) ::Document* IndexSearcher::doc
(int32 t 1) {
CL NS (document) : :Document* ret = CLNEW CL NS (document) : :Document ;

if (!doc(i,ret))

101

478

488

498

508

@@ -183,7 +165,12 @@

return reader->document (i,d) ;

}

+#endif

+ boost::python::object IndexSearcher::doc(const int32 t i) {
+ return reader->document (i) ;

+)

+

// inherit javadoc

int32_ t IndexSearcher::maxDoc() const {

//Func - Return total number of documents including the ones marked deleted
Index: Sort.cpp

--- Sort.cpp (.../vendor/clucene-core-0.9.20/src/CLucene/search/Sort.cpp) (
revision 115)
+++ Sort.cpp (.../branches/clucene-search/src/lucille/search/CLucene/search/Sort
.cpp) (revision 115)
@@ -5,6 +5,7 @@
* the GNU Lesser General Public License, as specified in the COPYING file.

__ */

#include "CLucene/StdHeader.h"

+#include "CLucene/util/StringBuffer.h"

#include "Sort.h"

#include "Compare.h"

Index: TermScorer.h

--- TermScorer.h (.../vendor/clucene-core-0.9.20/src/CLucene/search/TermScorer.h

) (revision 115)
+++ TermScorer.h (.../branches/clucene-search/src/lucille/search/CLucene/search/

TermScorer.h) (revision 115)
@@ -21,7 +21,7 @@
class TermScorer: public Scorer {
private:
CL_NS (index) : : TermDocs* termDocCs;
- uint8_t* norms;
+ const uint8 t* norms;
Weight* weight;
const float t weightValue;
int32 t doc;
@@ -36,7 +36,7 @@

102

//TermScorer takes TermDocs and delets it when TermScorer is cleaned up
TermScorer (Weight* weight, CL NS(index) ::TermDocs* td,
- Similarity* similarity, uint8 t* norms);

+ Similarity* similarity, comnst uint8 t* norms) ;

~TermScorer () ;
518
Index: BooleanScorer.cpp

--- BooleanScorer.cpp (.../vendor/clucene-core-0.9.20/src/CLucene/search/
BooleanScorer.cpp) (revision 115)

+++ BooleanScorer.cpp (.../branches/clucene-search/src/lucille/search/CLucene/
search/BooleanScorer.cpp) (revision 115)

@@ -5,6 +5,7 @@
* the GNU Lesser General Public License, as specified in the COPYING file.

__ */

#include "CLucene/StdHeader.h"

+#include "CLucene/util/StringBuffer.h"

528 #include "BooleanScorer.h"

#include "Scorer.h"

Index: TermQuery.cpp

--- TermQuery.cpp (.../vendor/clucene-core-0.9.20/src/CLucene/search/TermQuery.
cpp) (revision 115)

+++ TermQuery.cpp (.../branches/clucene-search/src/lucille/search/CLucene/search/
TermQuery.cpp) (revision 115)

@@ -32,6 +32,12 @@
_CLDECDELETE (term) ;

538
+ TermQuery: : TermQuery (boost : :python: :object _term) {
+ Term *t = CLNEW Term() ;
+ t->set(_term);
+ term = CL POINTER(t) ;
+)
+

Query* TermQuery::clone () const{
return CLNEW TermQuery (*this) ;
}
548 @@ -55,8 +61,11 @@
else

return term;

103

558

568

578

12

+ 4+ o+ o+

/**

Term *TermQuery:: getTermPython() const {

return CLNEW Term(*term) ;

Prints a user-readable version of this query. */

TCHAR* TermQuery::toString(const TCHAR* field) const{

@@ -73,7

}

/**

- bool
+ bool

i
@@ -180,

#include

#include
#include
#include
#include
#include
#include

#include

CL NS (util) ::StringBuffer buffer;
+82,7 @@

Returns true 1ff <codeso</code> is equal to this. */

TermQuery: :equals (Query* other) const {

TermQuery: :equals (const Query* other) const {

f (! (other->instanceOf (TermQuery: :getClassName ())))
return false;

7 +189,7 @@

fieldExpl->addDetail (idfExpl) ;

Explanation* fieldNormExpl = CLNEW Explanation() ;
uint8_t* fieldNorms = reader->norms (field) ;
const uint8 t* fieldNorms = reader-s>norms(field) ;

float_t fieldNorm =
fieldNorms!=NULL ? Similarity::decodeNorm(fieldNorms [doc])
fieldNormExpl->setValue (fieldNorm) ;

module. cpp: Boost.Python module definition

<boost/python.hpp>

"CLucene/StdHeader.h"
"CLucene/index/Term.h"
"SearchHeader.h"
"BooleanClause.h"
"BooleanQuery.h"
"TermQuery.h"

"IndexSearcher.h"

using namespace boost::python;

CL,_NS_US
CL,_NS_US

E (index)

E (search)

104

0.

of;

22

32

42

typedef Hits * (IndexSearcher::*search hits type) (Query *);

/* XXX should be auto ptr<Querys> but breaks? */

void BooleanQuery add(BooleanQuery &bg, auto ptr<TermQuery> g, bool required, bool
prohibited) {
bg.add(g.get (), required, prohibited) ;

g.release() ;

BOOST PYTHON MODULE (search) {
class_<Term> (" CLucene Term", no init)
.add_property("field", &Term:: fieldPython)
.add_property("text", &Term:: textPython)
class_<Query, boost::noncopyables>("Query", no_ init);
class_<BooleanQuery, auto ptr<BooleanQuery>, bases<Query> > ("BooleanQuery")
.def ("add", &BooleanQuery add) ;
class <TermQuery, auto ptr<TermQuery>, bases<Query> > ("TermQuery", init<object
>())
.def ("term", &TermQuery:: getTermPython,
return value policy<manage new object>()) ;
class_<Hits>("Hits", no_init)
.def ("length", &Hits::length)
.def ("doc", &Hits::doc)
.def ("id", &Hits::id)
(

.def ("score", &Hits::score)

class <IndexSearchers> ("IndexSearcher", init<objects>())
.def ("search", search hits type (&IndexSearcher::search),
return value policy<manage new object>())

.def ("close", &IndexSearcher::close)

I

105

	Acknowledgements
	Abstract
	Introduction
	Background
	Lucene
	Python
	Lucille
	Other ports of Lucene

	Performance of Lucille
	Outline of this report

	Reading from the index
	Writing an extension module in C
	Using mmap

	Psyco
	Lexical scanning with RE2C
	PLY
	RE2C
	Implementing the replacement standard_tokenizer

	Python-level optimisations
	Search using CLucene and Boost.Python
	CLucene
	Boost.Python
	Integrating the CLucene search module
	Future directions

	Conclusion
	References
	Code listings
	_store extension module
	analysis._standard extension module
	CLucene search module

