
1

P

IEEE Std 1275.1-1994

IEEE Standard for Boot
(Initialization Configuration) Firmware:
Instruction Set Architecture (ISA)
Supplement for IEEE 1754

,'-

IEEE Computer Society

Sponsored by the
Bus Architecture Standards Committee

W
W
W
I

Pubb3wd by the InSMuhr of Ehc#%aland Eklronics Engin-, Inc., 345 East 47th Street, New Y& NY 1WlZ USA.

IEEE November 78, 7994 SH94234

-

I

IEEE Std 1275.1 -1 994

IEEE Standard for Boot
(Initialization Configuration) Firmware:
Instruction Set Architecture (ISA)
Supplement for IEEE 1754

Sponsor

Bus Architecture Standards Committee
of the
IEEE Computer Society

Approved September 22,1994

IEEE Standards Board

Abstract: Firmware is the read-only-memory (ROM)-based software that controls a computer be-
tween the time it is turned on and the time the primary operating system takes control of the ma-
chine. Firmware’s responsibilities include testing and initializing the hardware, determining the
hardware configuration, loading (or booting) the operating system, and providing interactive debug-
ging facilities in case of faulty hardware or software. The core requirements and practices specified
by IEEE Std 1275-1 994 must be supplemented by system-specific requirements to form a complete
specification for the firmware for a particular system. This standard establishes such additional re-
quirements pertaining to the instruction set architecture (EA) defined by IEEE Std 1754-1994, IEEE
Standard for a 32-bit Microprocessor Architecture.
Keywords: boot, configuration, debug, FCode, firmware, Forth, initialization, plug-in device, ROM

,

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

Copyright 0 1994 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 1994. Printed in the United States of America.

ISBN 1-55937-462-4

No part of this pubication may be reproduced in any form, h an elecfronic refnevalsysfem or ofherwise, wihout fhe pHor
wriffen permission of the pub/isheK

I

. Contents

CLAUSE

1 .

2 .

3 .

4 .

5 .

6 .

Overview ... 1

References ... 1

Definitions of terms .. 1

Data formats and representations .. 1

Client interface requirements .. 2

5.1
5.2
5.3

Client program loading ... 2

Client interface handler ... 5
Initial program state .. 3

User interface extensions .. 6

6.1 Machine register access ... 7
6.2 Debugger extensions ... 9
6.3 Configuration variables ... 10
6.4 Restrictions .. 10

V

I

,

- IEEE Standard for Boot (Initialization Configuration)
Firmware: Instruction Set Architecture (ISA)
Supplement for IEEE 1754

1. Overview

This standard specifies the application of IEEE Std 1275-1994, IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices, to computer systems that use the instruction set architecture (ISA)
defined by IEEE Std 1754-1994,' including instruction-set-specific requirements and practices for debugging, client
program interface, and data formats. These requirements are imposed upon fmware compliant with IEEE Std 1275-
1994 when such firmware is used on a computer system that uses the above ISA. The requirements are not imposed
on the ISA itself.

2. References

This standard shall be used in conjunction with the following publications. When they are superseded by an approved
revision, the revision shall apply:

IEEE Std 1754-1994, IEEE Standard for a 32-bit Microprocessor Architecture.*

NOTE-Where the notation style differs between IEEE Std 1275-1994 and IEEE Std 1754-1994, the notation of this
document follows that of IEEE Std 1275-1994.

3. Definitions of terms

In addition to the following terms, this standard uses technical terms as they are defined in IEEE Std 1275-1994 and
in IEEE Std 1754-1994 (see clause 2):

3.1 core specification: Synonym for IEEE Std 1275-1994, i.e., the standard that specifies the system-
independent and bus-independent requirements for Open Firmware.

3.2 Open Firmware: The firmware architecture defined by IEEE Std 1275-1994 and its applicable supplements
or, when used as an adjective, a software component compliant with such an architecture.

4. Data formats and representations

The cell size shall be 32 bits. Number ranges for n, U, and other cell-sized items, are consistent with 32-bit two's-
complement number representation.

The required alignment for items accessed with a-uddr addresses shall be 2-byte alignment (i.e., any even address is an
acceptable a-uddr). (This ISA requires 4-byte alignment at the hardware level. However, the Forth implementation can
hide this restriction; doing so can result in worthwhile reductions in ROM size in some cases.) An implementation
may allow 1-byte alignment of a-addr addresses, but shall not require alignment more strict than that of 2 bytes.

Information on references can be found in clause 2.
2As this standard goes to press, IEEE Std 1754-1994 is approved but not yet published. The draft standard is, however, available from the
IEEE. Anticipated publication date is December 1994. Contact the IEEE Standards Department at 1 (908) 562-3800 for status information.

1

IEEE
1 Std 1275.1-1994

~

Offset
0
4

8

12

16

IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

Name
b f-magi c

b f -t ext

bf-data

bf-bss

b f -Dad1

Each operation involving a quddr address shall be performed with a singIe 32-bit access to the addressed location;
similarly, each wuddr access shall be performed with a single 16-bit access. (This, in conjunction with the alignment
requirements imposed by the instruction set architecture, implies 4-byte alignment of qaddrs and 2-byte alignment of
Waddrs.)

5. Client interface requirements

An Open Firmware client interface implementation for an IEEE 1754 compliant processor shall behave as described
in this clause.

5.1 Client program loading

5.1.1 Default load address

The default load address is the virtual address 0x4000. At least Ox80000 bytes of memory shall be available at that
address. It is strongly recommended that as much memory as is practical for the particular system be available there,
thus allowing the loading of large client programs.

5.1.2 Client program header

An Open Firmware implementation shall recognize the sequence of eight quadlets described below as a valid client
program header (as used by the load user interface command in the core specification) if the bf-magic and
bf-f ormat quadlets contain the specified values. If either quadlet does not contain the specified value, the behavior
of the Open Firmware load command is implementation-dependent. The offsets given below are from the
beginning of the loaded image. Each of the quadlets described below is in big-endian byte order.

I
~~

Size of the client program’s uninitialized data area

Undefined

20 I bf-oriqin I Client promm entry address I
24 I bfL~ad2 I Undefined I
28 I bf-format 1Oxffff.ffff I

,
The program image immediately follows the header. After recognizing this header, load allocates and maps
bf-text + bf-data + bf-bss bytes of memory beginning at the address given by bf-origin, moves the
program image, of size bf-text + bf-data, to that address, and zeroes bf-bss bytes of memory beginning at
bf-origin+bf-text+bf-data.

NOTE-Some existing client programs use other values in bf-format. An Open Firmware implementation may implement
compatibility modes to handle such client programs. The details of such compatibility modes are outside the scope of this
standard.

2

INSTRUCTION SET ARCHITECTURE (ISA) SUPPLEMENT FOR IEEE 1754
I

I Value

IEEE
SM 1275.1-1994

' S=l
ICC=O
EF=l if floating-point coprocessor present
EC=l if second coprocessor present
EE=O
ET=l
PIL: implementation-dependent value sufficiently low to allow the Open Firmware timer
interrupt to occur
CWP: 0

5.2 Initial program state -

This subclause defines the initial program state, the execution environment that exists when the first machine
instruction of a client program of the format specified above begins execution. Many aspects of the initial program
state are established by i n i t -grogram, which sets the saved-program-state so that subsequent execution of go
will begin execution of the client program with the specified environment.

5.2.1 Register values

The CPU registers shall contain the following values:

Register(s)
%psr

% w i m
% t b r
%Y

2
See 5.2.4.

% i 7 l o I
% 0 6 , % i 6
%ol, % 0 2
%03
Other registers

See 5.2.2.
See 5.2.3.
Address of client interface handler. See 5.3.
Other global (%go-%g7), local (%lo-%17), in (%iO-%i5), and out (%oO, %04,
%05, %07) registers may be used for conveying information required by other client
interfaces that are outside the scope of this standard. Any registers that are not used for
such uumoses shall contain zero.

NOTE-The stipulation that unused other registers contain zero makes it possible for a firmware system to support multiple
different client interfaces simultaneously. For example, a firmware system might present both an Open Firmware client
interface and also a different interface for compatibility with some existing client program. A client program can determine
whether or not a particular client interface is present by testing for a nonzero value in one of the registers that that client
interface uses. The presence of the Open Firmware client interface is denoted by a nonzero value in %03. An earlier firmware
system that was an ancestor of Open Firmware uses %oO to pass the (nonzero) address of its client interface data structure to
the client program.

5.2.2 Initial stack

When the first machine instruction of a client program begins execution, there shall be a valid stack and the
processor state shall have the following characteristics:

- % i 6 shall contain zero.
- %06 shall contain an 8-byte-aligned address referring to a location within an area of memory that the Open

Firmware implementation has allocated for use as the client program's stack. That address shall be at least 96
bytes below the top address of the stack memory area (providing space for saving the window registers of the
current window), and at least 8000 bytes above the bottom address of stack memory area (providing room for
stack growth).

3

lEEE
Std 1275.1-1994

Hardware
Trap #

IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

Name Behavior

An Open Firmware implementation shall handle window overflow traps by saving the “local” and “in” registers of
the window below the trap window to the address specified by the %06 register of that window.

6

An Open Firmware implementation shall handle window underflow traps by restoring the “local” and “in” registers
of the window above the trap window from the address specified by the %06 register of that window.

Window underflow See 5.2.2.

5.2.3 Client program arguments

0x1 I-Oxlf

oxff

Registers %ol and %02 may be used to pass to the client program an array of bytes of arbitrary content, with %ol
containing the base address of the array and %02 the length. If no such array is passed, %ol and %02 shall contain
zero.

Interrupt vectors An Open Firmware implementation may use
certain interrupt vectors for internal functions, for
example, managing the timer used to implement
the ALARM mechanism. Vectors that are not used
for such purposes shall save-state-and-interact.

This trap vector is used for Open Firmware
breakpoints. The Open Firmware handler for this
trap vector shall save-state-and-interact.

Software trap 127

NUE3
I-The Open Firmware standard makes no provision for specifying such an array or its contents. Therefore, in the absence
of implementation-dependent extensions, a client program executed directly from an Open Firmware implementation will
not be passed such an array. However, intermediate boot programs that simulate or propagate the Open Firmware client
interface to the programs that they load can provide such an array for their clients.
2-Boot command line arguments, typically consisting of the name of a file to be loaded by a secondary boot program
followed by flags selecting various secondary boot and operating system options, are provided to client programs via the
“bootargs” and ‘bootpa th” properties of the “/chosen” node.

5.2.4 Trap table

In this subclause, save-state-and-interact means to save the CPU state to the extent possible, display (if possible) a
message indicating that the trap occurred, and return control to the Open Firmware user interface if it is present.

%tbr shall refer to a trap table that handles traps as described in this subclause.

Open Firmware trap table entries shall not contain PC-relative branch offsets, in order that client programs can copy
trap table entries without modifying them.

5 I Window ovefflow I See 5.2.2.
I I

A client program that installs its own trap table but wishes to continue using Open Firmware services should
preserve the Open Firmware trap table entries for any traps that the client program does not explicitly need to handle.
A good technique for doing this is to copy the contents of the Open Firmware trap table into the client program’s
trap table, and then to replace only those entries to be serviced directly by the client program.

4

INSTRUCTION SET ARCHITECTURE (SA) SUPPLEMENT FOR IEEE 1754
IEEE

Std 1275.1-1994

A client program shall not alter entries within the Open Firmware trap table.

When an Open Firmware command interpreter is entered after a client program has begun execution (e.g., via a user
abort sequence, the enter client interface service, or a trap), the Open Firmware implementation shall restore the
trap table register to point to its own trap table. If execution of the client program is subsequently resumed (e.g.,
with the go command), the Open Firmware implementation shall restore the trap table register to the value
previously established by the client program.

5.2.5 MMU

The memory management unit (MMU), if present, shall be enabled.

NOTE-Many client programs require no knowledge of the details, or even the existence, of the MMU.

5.2.6 Virtual address space and memory allocation

When a client program begins execution, an Open Firmware implementation’s use of any virtual address space
outside of the ranges Oxffd0.0000-0xffef.ffff and Oxfe00.0000-0xfeff.ffff shall have ceased, except for the virtual
address space and associated memory that is allocated for the client program’s code and data, as specified in the client
program header. Subsequently, the Open Firmware implementation shall not allocate virtual address space outside
those ranges, except as needed for the execution of subsequent client programs or as explicitly requested by a client
program.

An Open Firmware implementation should use the virtual address space range Oxffd0.0000-0xffef.ffff in preference to
the range Oxfe00.0000-0xfeff.ffff, to the extent that is possible. Furthermore, allocation within the range
O x f e O O . ~ f e f f . f f f f should allocate higher addresses before lower addresses.

Client programs shall not depend on the ability to be loaded (as specified by its client program header) within either
of those address ranges.

NOm-By inspecting the value of “available” and “existing” properties in an MMU package, if such a package
exists, a client program can determine precisely which ranges of virtual address space the firmware is using. For maximum
portability, a client program ought not depend on the availability of any particular “hardcoded” virtual address.

5.2.7 Memory cache(s)

IEEE Std 1754-1994 does not specify the cache organization, thus cache details depend on the system architecture.
As a general guideline, it is recommended that the initial program state should have caches enabled.

5.3 Client interface handler
t

The client interface handler shall perform the following sequence of operations:

Invoke the Open Firmware client interface service specified by the argument array whose address was in %oO
when the code sequence was invoked.
Place the return value (indicating success or failure of the attempt to invoke the service) back in %oO.
Return control to the client program at the address equal to eight plus the value that was in %07 when the code
sequence was invoked.

The execution of the client interface handler, including the invocation of the client interface service, shall preserve
the contents of all CPU registers other than %oO, %ol, % 0 2 , %03, %04, and %os.

5

IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE

NOTE-This implies that in order to invoke a client interface service, a client program first constructs a client interface
argument array and puts its address in %OD, puts the return address minus eight in % 0 7 , and then jumps to the client
interface handler (typically this is done by using a JMPL instruction with %a7 as the destination register).

The client interface handler may assume that it is invoked with a valid stack with enough space free to store 24
quadlets (enough for the active register window and the global registers), and that operational window ovefflow and
window underflow trap handlers are installed in the current trap table.

A cZienrprogram calling a client interface service must ensure that when the client interface handler is invoked, the
stack is valid and has enough space free to store 24 quadlets (enough for the active register window and the global
registers), and that operational window ovefflow and window underflow trap handlers are installed in the current trap
table.

NOTE-These conditions are met when a client program first begins execution under the control of an Open Firmware
implementation. In order to call client interface services, the client program must not destroy the integrity of the stack.

6. User interface extensions

An Open Firmware user interface implementation for an IEEE 1754 compliant processor should implement
the following additional commands.

catch-interrupt (level --)
Install simple interrupt hander for indicated interrupt priority level.

Establish a handler for interrupt level (1-15). If an interrupt occurs on that level, the handler sets the value of
interrupt-occurred? to true (-1) and sets the value of vector-used to the interrupt level.

interrupt-occurred? (-- a-addr)
variable contains true if an interrupt occurred.

A variable that will be set to true (-1) when an interrupt occurs on a level guarded by catch-
interrupt .

pil! (level --)
Set the current CPU interrupt priority level (0 .. 15).

The other (noninterrupt-priority) bits within the Processor Status Register are not changed.

pile (-- level)
Return the current CPU interrupt priority level (0 .. 15).

spacec !
Store byte at addr in space asi.

spacec@
Fetch byte from addr in space m i .

(byte addr asi --)

(addr asi -- byte)

spaced ! (qdata.10 qdata.hi qaddr asi --)
Store 2 quadlets at qaddr in space asi.

qdatahi is stored at qaddr, and qdata.10 at qaddr+4, using an STDA instruction. A trap may result if qaddr is not
a multiple of eight.

6

IEEE
INSTRUCTION SET ARCHITECTURE (ISA) SUPPLEMENT FOR IEEE 1754 SM 1275.1-1994

I

spaced@ (qaddr asi - qdata.10 qdata.hi)
Fetch 2 quadlets from quddr in space usi.

qdutahi is the contents of the location at quddr, and qdutu.10 is the contents of the location at quddri-4. The
operation is performed with an LDDA instruction. A trap may result if quddr is not a multiple of eight.

space1 ! (quad qaddr asi -)
Store quadlet quad at quddr in space usi.

A trap may result if quddr is not a multiple of 4.

s p a c e l g (qaddr asi - quad)
Fetch quadlet quad from quddr in space mi .

A trap may result if quddr is not a multiple of 4.

spacew! (w waddr asi --)
Store doublet w at waddr in space asi.

A trap may result if wuddr is not a multiple of 2.

spacewe (waddr asi -- w)
Fetch doublet w from wuddr in space mi.

A trap may result if wad& is not a multiple of 2.

v e c t o r - u s e d (-- a-addr)
variable contains the level of the last interrupt.

A variable that will be set to the interrupt level when an interrupt occurs on a level guarded by
catch-interrupt.

6.1 Machine register access

Processors compliant with IEEE Std 1754-1994 contain multiple register “windows.” The processor hardware
physically implements a single set of the “global” registers (registers 0-7) and multiple sets (typically, seven or
eight) of the “out,” “local,” and “in” register windows. From the point of view of a typical program, the number of
logical windows is limited only by the amount of memory available for the program stack. The hardware, through
“window overflow” and “window underflow” traps, manages the hardware register windows transparently to the
program, saving them to and restoring them from memory as necessary.

The saved-program-state shall contain the values of the set of 16 windowed registers that was active when the state
was saved. The process of saving the program state shall include flushing the other hardware register window sets to
the locations reserved for them on the program’s stack. If the registers that specify those locations are invalid, an
Open Firmware implementation may omit the flushing of the corresponding register window sets.

The window register access commands (%oO-%07, %lo-%17, %iO-%i7) refer to one set of window registers at
any given time; that set is known as the disprayed regisrer sei. The various displayed register sets are denoted by
small integers. Set zero is the set that was active when the program state was saved. Set one is the set that would be
active if a RESTORE instruction were executed from set zero, and so on. The maximum set number is determined
not by the number of hardware register window sets, but instead by the number of “logical” register window sets in
use by the program at the time the state was saved. That maximum number can be less than, equal to, or greater than
the number of register windows implemented by the hardware.

t

When the Forth interpreter (Open Firmware user interface) is invoked, after the program state is saved, the displayed
register set shall be set to zero, and may be changed with the w command. If the displayed register set is zero, the

7

IEEE
Std 1275.1-1994

I

IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE

register values shall be accessed from the saved-program-srure. Otherwise, the values shall be accessed from the
appropriate save area in the program stack.

The following commands represent registers within the saved-program-state. Executing the command returns the
saved value of the corresponding register. The saved value can be changed by preceding the command with the new
value and to. The actual registers are restored to the saved values when go is executed.

%go through %g7
Access saved copies of “global” registers.

Return (or set, if preceded by to) the value, within the saved-program-state, corresponding to the contents of the
register with the same name as the command.

%io through %i7
Access saved copies of “in” registers.

Return (or set, if preceded by to) the value, within the window register save area for the current display window,
corresponding to the contents of the register with the same name as the command.

%lo through %17 (- - n)
Access saved copies of “local” registers.

Return (or set, if preceded by to) the value, within the window register save area for the current display window,
corresponding to the contents of the register with the same name as the command.

%oO through %07
Access saved copies of “out” registers.

Return (or set, if preceded by to) the value, within the window register save area for the current display window,
corresponding to the contents of the register with the same name as the command.

%pc and %npc (- - n)
Saved program counter and next program counter.

Return (or set, if preceded by to) the value, within the saved-program-state, corresponding to the contents of
the register with the same name as the command.

%psr
Saved processor state register.

Return (or set, if preceded by to) the value, within the saved-progrum-state, corresponding to the contents of
the register with the same name as the command.

%tbr (- - n >
Saved trap base register.

Return (or set, if preceded by to) the value, within the saved-program-state, corresponding to the contents of
the register with the same name as the command.

%wim (- - n)
Window invalid mask register.

Return (or set, if preceded by to) the value, within the saved-program-state, corresponding to the contents of
the register with the same name as the command.

%Y (- - n)
y register.

Return (or set, if preceded by to) the value, within the saved-program-state, corresponding to the contents of
the register with the same name as the command.

8

INSTRUCTION SET ARCHITECTURE (ISA) SUPPLEMENT FOR IEEE 1754

%f 0 through %€ 3 1
Access floating-point registers.

IEEE
SM 1275.1-1994

Return (or set, if preceded by to) the value corresponding to the contents of the register with the same name as the
command.

%fsr
Access floating-point state register.

Return (or set, if preceded by to) the value corresponding to the contents of the register with the same name as the
command.

The following commands display the saved-program-state:

I

.locals (-- 1
Display all the integer registers in the current window.

W (window# --)
Set the current window for display of the %i?, %o?, and %1? registers.

See also: .window.

I r

!

.window (window# --)
Display all the integer registers in the window specified by window#.
Equivalent to: w .locals
NOTE-the current window will be changed to the value given by window#.

.psr (-- 1
Formatted display of the saved processor state register.

This command sets the values in both program counter registers:

set-pc (a-addr --)
Set %pc to a-addr and %ngc to a-addr+4.

!

6.2 Debugger extensions

The commands dis, +dis, . instruction, and . adr shall display addresses and symbol name offsets in
hexadecimal.

return (-- 1
Execute until a return from subroutine is reached.

Set a breakpoint at the address given by register %i7 + 8 and then execute go.
I
I

return1 (-- 1
Execute until a return from subroutine is reached.

Same as return except uses %07 instead of %i7.

9

$€€E
Std 1275.1-1994

L

6.3 Configuration variables

watchdog-reboot? (-- reboot?)
Jf true, reboot automatically after watchdog reset.

Configuration variable type: Boolean. Suggested default value: false.

6.4 Restrictions

None.

10

N

	Overview
	References
	Definitions of terms
	Data formats and representations
	Client interface requirements
	Client program loading
	Initial program state
	Client interface handler

	User interface extensions
	Machine register access
	6.2 Debugger extensions
	6.3 Configuration variables
	6.4 Restrictions

